File size: 2,743 Bytes
364c721 a08193f 364c721 a08193f 364c721 a08193f 364c721 80548f7 a08193f 364c721 80548f7 364c721 80548f7 364c721 80548f7 364c721 a08193f 364c721 80548f7 364c721 a08193f 364c721 a08193f 364c721 a08193f 364c721 a08193f 364c721 a08193f 364c721 a08193f 364c721 80548f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language: en
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distil-wav2vec2-adult-child-cls-37m
results: []
---
# DistilWav2Vec2 Adult/Child Speech Classifier 37M
DistilWav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a distilled version of [wav2vec2-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-adult-child-cls) on a private adult/child speech classification dataset.
This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| ------------------------------------- | ------- | ----------- | ----------------------------------------- |
| `distil-wav2vec2-adult-child-cls-37m` | 37M | wav2vec 2.0 | Adult/Child Speech Classification Dataset |
## Evaluation Results
The model achieves the following results on evaluation:
| Dataset | Loss | Accuracy | F1 |
| --------------------------------- | ------ | -------- | ------ |
| Adult/Child Speech Classification | 0.1431 | 95.89% | 0.9624 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: 3e-05
- `train_batch_size`: 32
- `eval_batch_size`: 32
- `seed`: 42
- `gradient_accumulation_steps`: 4
- `total_train_batch_size`: 128
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_ratio`: 0.1
- `num_epochs`: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
| :-----------: | :---: | :--: | :-------------: | :------: | :----: |
| 0.2586 | 1.0 | 96 | 0.2257 | 0.9298 | 0.9363 |
| 0.1917 | 2.0 | 192 | 0.1743 | 0.9460 | 0.9500 |
| 0.1568 | 3.0 | 288 | 0.1701 | 0.9511 | 0.9545 |
| 0.0965 | 4.0 | 384 | 0.1501 | 0.9548 | 0.9584 |
| 0.1179 | 5.0 | 480 | 0.1431 | 0.9589 | 0.9624 |
## Disclaimer
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
## Authors
DistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/). All computation and development are done on Kaggle.
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.10.3 |