File size: 2,309 Bytes
361f4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba806ae
361f4f3
3128428
361f4f3
eded877
 
 
 
8d4d84c
eded877
 
 
 
 
8d4d84c
eded877
 
 
9343b4d
 
44abf99
37daef4
361f4f3
 
163eb69
361f4f3
 
 
 
 
 
 
3128428
 
361f4f3
 
 
 
 
 
 
 
 
 
 
f0b89f3
361f4f3
 
 
 
 
2e5002b
a825c09
 
f0b89f3
361f4f3
bda656c
eded877
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    metrics:
       - name: Test WER
         type: wer
         value: 0.244673
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija

**wav2vec2-large-xlsr-53** fine-tuned on 27 hours (27 people) of labeled Darija Audios.

# Old model vs new model

<u>Old Model:</u>
- The model contains numerous incorrect transcriptions as input
- There are multiple transcribers.
- The audio database is not organized (by gender, age, regions ..).
- Wrong wer rate

<u>New Model:</u>
- Transcriptions are now performed by a single individual.
- Each hour of audio is pronounced by one person.
- Fine-tuning is ongoing 24/7 to enhance accuracy, and we are consistently adding more data to the model every day.
- True Wer rate

<table><thead><tr><th><strong>Training Loss</strong></th> <th><strong>Validation</strong></th> <th><strong>Loss Wer</strong></th></tr></thead> <tbody><tr><td>0.057800</td> <td>0.297430</td> <td>0.244673</td></tr> </tbody></table>

## Usage

The model can be used directly as follows:

```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer

tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')


# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)

# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values

# retrieve logits
logits = model(input_values).logits

tokens = torch.argmax(logits, axis=-1)

# decode using n-gram
transcription = tokenizer.batch_decode(tokens)

# print the output
print(transcription)
```

Output: قالت ليا هاد السيد هادا ما كاينش بحالو 

email: souregh@gmail.com
BOUMEHDI Ahmed