File size: 2,309 Bytes
361f4f3 ba806ae 361f4f3 3128428 361f4f3 eded877 8d4d84c eded877 8d4d84c eded877 9343b4d 44abf99 37daef4 361f4f3 163eb69 361f4f3 3128428 361f4f3 f0b89f3 361f4f3 2e5002b a825c09 f0b89f3 361f4f3 bda656c eded877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Test WER
type: wer
value: 0.244673
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija
**wav2vec2-large-xlsr-53** fine-tuned on 27 hours (27 people) of labeled Darija Audios.
# Old model vs new model
<u>Old Model:</u>
- The model contains numerous incorrect transcriptions as input
- There are multiple transcribers.
- The audio database is not organized (by gender, age, regions ..).
- Wrong wer rate
<u>New Model:</u>
- Transcriptions are now performed by a single individual.
- Each hour of audio is pronounced by one person.
- Fine-tuning is ongoing 24/7 to enhance accuracy, and we are consistently adding more data to the model every day.
- True Wer rate
<table><thead><tr><th><strong>Training Loss</strong></th> <th><strong>Validation</strong></th> <th><strong>Loss Wer</strong></th></tr></thead> <tbody><tr><td>0.057800</td> <td>0.297430</td> <td>0.244673</td></tr> </tbody></table>
## Usage
The model can be used directly as follows:
```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens = torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
```
Output: قالت ليا هاد السيد هادا ما كاينش بحالو
email: souregh@gmail.com
BOUMEHDI Ahmed
|