File size: 3,050 Bytes
361f4f3 f72f5af 361f4f3 3128428 361f4f3 7817a6c 361f4f3 076d81a 37daef4 361f4f3 163eb69 361f4f3 3128428 361f4f3 2e5002b a825c09 d9b4b0b 361f4f3 bda656c f72f5af 770cbb0 f72f5af c04196a f72f5af 107250c 8328e1a bda656c 824fe3c 1a7b72f 824fe3c f72f5af 1670723 bda656c 361f4f3 57d37ce 632b9c9 57d37ce 632b9c9 57d37ce 14d40fa f72f5af 1a7b72f 14d40fa a7c3711 bda656c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Test WER
type: wer
value: 23.44
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija
**wav2vec2-large-xlsr-53** fine-tuned on 10 hours of labeled Darija Audios
The vocabulary contains 3 additional phonetic units ڭ, ڤ and پ. For example: ڭال , ڤيديو , پودكاست
## Usage
The model can be used directly as follows:
```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens=torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
```
Here's the output: ڭالت ليا هاد السيد هادا ما كاينش بحالو
## Evaluation & Previous works
====================================
-v3 (fine-tuned on 10 hours of audio + changed hyperparameters + discovered a huge mistake when using the letter 'ا' that improves the WER dramatically)
**Wer**: 23.44
**Training Loss**: 15.96
**Validation Loss**: 33.92
The validation loss goes down as we add more data for training.
Further training to decrease the training Loss makes this model overfit a little bit.
====================================
-v2 (fine-tuned on 9 hours of audio + replaced أ and ى and إ with ا as it creates a lot of problems + tried to standardize the Moroccan Darija)
**Wer**: 44.30
**Training Loss**: 12.99
**Validation Loss**: 36.93
Validation Loss has decreased on this version which means that the model can more generalize for unknown data compared to the previous version.
The validation loss is still high also because the validation data contains words that have never been trained before. The solution is to add more data and more hours of training.
Further training to decrease the training Loss makes this model overfit a little bit.
====================================
-v1 (fine-tuned on 6 hours of audio)
**Wer**: 49.68
**Training Loss**: 9.88
**Validation Loss**: 45.24
====================================
## Future Work
I am currently working on improving this model.
email: souregh@gmail.com
|