File size: 2,192 Bytes
3a37ba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- dutch_social
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: robbert-twitter-sentiment-tokenized
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: dutch_social
type: dutch_social
args: dutch_social
metrics:
- name: Accuracy
type: accuracy
value: 0.814
- name: F1
type: f1
value: 0.8132800039281481
- name: Precision
type: precision
value: 0.8131073640029836
- name: Recall
type: recall
value: 0.814
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert-twitter-sentiment-tokenized
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the dutch_social dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5473
- Accuracy: 0.814
- F1: 0.8133
- Precision: 0.8131
- Recall: 0.814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6895 | 1.0 | 282 | 0.6307 | 0.7433 | 0.7442 | 0.7500 | 0.7433 |
| 0.4948 | 2.0 | 564 | 0.5189 | 0.8053 | 0.8062 | 0.8081 | 0.8053 |
| 0.2642 | 3.0 | 846 | 0.5473 | 0.814 | 0.8133 | 0.8131 | 0.814 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6
|