File size: 2,080 Bytes
2880daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
tags:
- generated_from_trainer
datasets:
- dutch_social
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: robbert-twitter-sentiment
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: dutch_social
      type: dutch_social
      args: dutch_social
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.749
    - name: F1
      type: f1
      value: 0.7491844724992662
    - name: Precision
      type: precision
      value: 0.7493911755249737
    - name: Recall
      type: recall
      value: 0.749
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# robbert-twitter-sentiment

This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the dutch_social dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6818
- Accuracy: 0.749
- F1: 0.7492
- Precision: 0.7494
- Recall: 0.749

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.7485        | 1.0   | 188  | 0.7670          | 0.692    | 0.6915 | 0.6920    | 0.692  |
| 0.5202        | 2.0   | 376  | 0.6818          | 0.749    | 0.7492 | 0.7494    | 0.749  |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.11.0+cpu
- Datasets 2.0.0
- Tokenizers 0.12.0