File size: 4,802 Bytes
6725209
49b7c6f
 
599355b
49b7c6f
599355b
49b7c6f
 
 
 
 
 
 
 
 
 
 
 
6725209
599355b
 
49b7c6f
599355b
49b7c6f
 
599355b
49b7c6f
 
 
 
 
599355b
 
49b7c6f
599355b
49b7c6f
 
 
599355b
49b7c6f
599355b
49b7c6f
599355b
 
49b7c6f
599355b
49b7c6f
 
 
 
85d673e
49b7c6f
 
599355b
 
 
 
49b7c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599355b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: llama2
library_name: transformers
tags:
- code
model-index:
- name: Code Millenials
  results:
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: openai_humaneval
    metrics:
    - type: pass@1
      value: 0.671
      name: pass@1
      verified: false
---


# Bud Code Millenials 8B

Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to jithinvg@bud.studio
### News 🔥🔥🔥

- [2024/04/21] We released **Code Millenials 8B** , which achieves the **67.1 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/09] We released **Code Millenials 3B** , which achieves the **56.09 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/09] We released **Code Millenials 1B** , which achieves the **51.82 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).


### HumanEval

<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/BudEcosystem/code-millenials/main/assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

For the millenial models, the eval script in the github repo is used for the above result.

Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc. 


### Models

|   Model | Checkpoint  | HumanEval (+) | MBPP (+) |
|---------|-------------|---------------|----------|
|Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 (75) | 74.68 (62.9) |
|Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 (69.5) | 70.17 (57.6) |
|Code Millenials 8B | <a href="https://huggingface.co/budecosystem/code-millenials-8b" target="_blank">HF Link</a> | 67.1 (61.6) | - |
|Code Millenials 3B | <a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a> | 56.09 (52.43) | 55.13 (47.11) |
|Code Millenials 1B | <a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a> | 51.82 (48.17) | 53.13 (44.61) |




### 🚀 Quick Start

Inference code  using the pre-trained model from the Hugging Face model hub

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-8b")
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-8b")

template = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.

### Instruction: {instruction}

### Response:"""

instruction = <Your code instruction here>

prompt = template.format(instruction=instruction)

inputs = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))

```


## Training details

The model is trained of 16 A100 80GB for approximately 50hrs. 

| Hyperparameters              | Value  |
| :----------------------------| :-----: |
| per_device_train_batch_size  | 16      |
| gradient_accumulation_steps  | 1      |
| epoch | 3 |
| steps | 2157 |
| learning_rate                | 2e-5   |
| lr schedular type | cosine |
| warmup ratio | 0.1 |
| optimizer                    | adamw  |
| fp16                         | True   |
| GPU                          | 16 A100 80GB |

### Important Note

- **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.