--- language: - en library_name: transformers pipeline_tag: text-generation --- # GenZ 13B v2 The instruction finetuned model with 4K input length. The model is finetuned on top of pretrained LLaMa2 ## Inference ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("budecosystem/genz-13b-v2", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("budecosystem/genz-13b-v2", torch_dtype=torch.bfloat16) inputs = tokenizer("The world is", return_tensors="pt") sample = model.generate(**inputs, max_length=128) print(tokenizer.decode(sample[0])) ``` Use the following prompt template ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi, how are you? ASSISTANT: ``` ## Finetuning ```bash python finetune.py --model_name meta-llama/Llama-2-13b --data_path dataset.json --output_dir output --trust_remote_code --prompt_column instruction --response_column output ``` Check the GitHub for the code -> [GenZ](https://github.com/BudEcosystem/GenZ)