--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-xsum_readme_summarization results: [] --- # bart-large-xsum_readme_summarization This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1218 - Rouge1: 0.5637 - Rouge2: 0.4319 - Rougel: 0.5369 - Rougelsum: 0.5371 - Gen Len: 21.5048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.1078 | 1.0 | 1458 | 1.9876 | 0.4994 | 0.3426 | 0.4684 | 0.4682 | 20.1103 | | 1.3919 | 2.0 | 2916 | 1.8539 | 0.5137 | 0.3697 | 0.4841 | 0.4839 | 21.8345 | | 0.9878 | 3.0 | 4374 | 1.9027 | 0.5441 | 0.401 | 0.5174 | 0.5171 | 20.1487 | | 0.6594 | 4.0 | 5832 | 2.0362 | 0.5628 | 0.4272 | 0.5385 | 0.538 | 21.3417 | | 0.4691 | 5.0 | 7290 | 2.1218 | 0.5637 | 0.4319 | 0.5369 | 0.5371 | 21.5048 | ### Framework versions - Transformers 4.35.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1