a2c-AntBulletEnv-v0 / config.json
c72599's picture
Initial commit
9ce3af0
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbe09504a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbe09504af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbe09504b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbe09504c10>", "_build": "<function ActorCriticPolicy._build at 0x7fbe09504ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbe09504d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbe09504dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbe09504e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbe09504ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbe09504f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbe09505000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbe09505090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbe094fec00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688834493186019802, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZcNz/S8lo+g2nIv5Z+LT3JK+4+FJWjva8ffD/Vb3e/DxY8PzAUY0DONI0//NOKP3RInr05Fg++UP4fv6iEqb4+aKa+3nNLwEMihz+5nge+or1Bv3n5pb8kMZq97sOKv/yBDsByYR0/vVbuv3qQWz6xr60/HVbpPk4Sur+iXqC/t4nCPydIW8CcmoM/rBz5vgG3O7+dK1pAqXmjPxBMKr+KC3O+1EmkP+LGTz5boyPAUkRoP3tTLr8atvQ+eaOeQO5zAz++thy/hgbePhjyHT/8gQ7AZDXQv71W7r96kFs+LSg1P1IEYD9EAZS/fUx1vwuaHz/T7II+uqmQPx1L+T2EVfU+ltmVv6Tkpj+hqv8+u0JsP/juiL6MbRi//FfCPyVxwj8whKS+JYMKPxYS4j6W2Jw/RSGhvxDY874ZTAm/OPDlPmQ10L8lfAk/epBbPlqWeD+XRxg/xb6vv6Gtx7/cByVAOcOoP8QUnz/hicI+TeE7P/5sN7+7vtA/kqRiP21ehj8cIni8N8qGv0deB0C7z0y/aG6eP9E9hb/ePAq9AC3gPjggwr2mXB+/zCSUvDjw5T5kNdC/JXwJP3qQWz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA4j+61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIgu8PQAAAACVgdq/AAAAAKLgZj0AAAAA+srnPwAAAACSjdC9AAAAAMFL5j8AAAAA+9F3vQAAAAA49Pi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuwzjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGmQ/b0AAAAA9CXivwAAAADl6f+8AAAAAOhZ+D8AAAAAdBDaPQAAAAD4ovc/AAAAAM78vb0AAAAAtYbxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4QibUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBpOC28AAAAAAvk378AAAAAD4YevQAAAAASvvc/AAAAAOGfWT0AAAAA//nZPwAAAAAK0YU9AAAAAFfD3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABf20E1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1YUZuwAAAAAqSgHAAAAAAESrQjwAAAAA3gHqPwAAAACQSQY+AAAAALHH3T8AAAAA9f/WPQAAAABhovW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJK0/IzWPLiMAWyUTegDjAF0lEdArhb4vtdAxHV9lChoBkdAkuv8z/IbO2gHTegDaAhHQK4X4bExZdR1fZQoaAZHQJRkzamGdqdoB03oA2gIR0CuGBOmBOHndX2UKGgGR0CSgHx5s0pFaAdN6ANoCEdArhkkojOcD3V9lChoBkdAlGddalk6LmgHTegDaAhHQK4kk814xDd1fZQoaAZHQJHbikWRA8loB03oA2gIR0CuJXxNRFZxdX2UKGgGR0CTxtuHN5dGaAdN6ANoCEdAriWus3hn8XV9lChoBkdAk/082rGR3mgHTegDaAhHQK4m0zfJmul1fZQoaAZHQJPSFU83dbhoB03oA2gIR0CuNniONo8IdX2UKGgGR0CTCfGCI1tPaAdN6ANoCEdArjdY60Y0mHV9lChoBkdAk25vtx+8XmgHTegDaAhHQK43ht4RmK91fZQoaAZHQJNrHukUKzBoB03oA2gIR0CuOJE9dNWVdX2UKGgGR0CTP/undfsvaAdN6ANoCEdArkQDhDPWx3V9lChoBkdAk9b7Xg9/0GgHTegDaAhHQK5E7rQgLZ11fZQoaAZHQJWHM1m8M/hoB03oA2gIR0CuRR8LKFIvdX2UKGgGR0CVXDoouwotaAdN6ANoCEdArkYveWOZLXV9lChoBkdAlNOD7/GVA2gHTegDaAhHQK5VyJiRW911fZQoaAZHQJSA//Ot4iZoB03oA2gIR0CuVsiT2WY4dX2UKGgGR0CTscU5dWyUaAdN6ANoCEdArlcChxo7FXV9lChoBkdAk+DzfFaStGgHTegDaAhHQK5YOnyd4FB1fZQoaAZHQJOnqx3V091oB03oA2gIR0CuY9P1DjR2dX2UKGgGR0CT5+NAC4jKaAdN6ANoCEdArmS5yn1nNHV9lChoBkdAlK7Xjp9qlGgHTegDaAhHQK5k7BInSfF1fZQoaAZHQJIYwz0pVjtoB03oA2gIR0CuZfrFOwgUdX2UKGgGR0CTOINgSeyzaAdN6ANoCEdArnWRDVpblnV9lChoBkdAlEDPUrkKeGgHTegDaAhHQK52gpKjBVN1fZQoaAZHQJRQT6TGHYZoB03oA2gIR0CudrHrhR64dX2UKGgGR0CTfoQF9roGaAdN6ANoCEdArnfIarFOwnV9lChoBkdAlAsd4u9OAWgHTegDaAhHQK6Fu29cry11fZQoaAZHQJSqnbYbsGBoB03oA2gIR0CuhznQID5kdX2UKGgGR0CV7Pkn1FpgaAdN6ANoCEdAroeKQYDT0HV9lChoBkdAlXW1QqI8AGgHTegDaAhHQK6JQOG0u151fZQoaAZHQJK30VZcLShoB03oA2gIR0CumZCb2Dg7dX2UKGgGR0CUqD9i+cpcaAdN6ANoCEdArpp66FuejHV9lChoBkdAkjsRDLKV6mgHTegDaAhHQK6aqyC4Bmx1fZQoaAZHQJKsjC+De0poB03oA2gIR0Cum7t29tdidX2UKGgGR0CSeN1jAi3YaAdN6ANoCEdArqcAuRLbpXV9lChoBkdAkvjPovBacWgHTegDaAhHQK6n5MEA5rB1fZQoaAZHQJF4TNt65XloB03oA2gIR0CuqCX6InBtdX2UKGgGR0CR15sQd0aIaAdN6ANoCEdArqkznvDxb3V9lChoBkdAk49hwhnrZGgHTegDaAhHQK64uXGff411fZQoaAZHQJUXhfE4vOBoB03oA2gIR0CuuZra/RE4dX2UKGgGR0CT8ObpeNT+aAdN6ANoCEdArrnJuVHFxXV9lChoBkdAlJUXr6ciGGgHTegDaAhHQK6626fapP11fZQoaAZHQJOmLRtxdY5oB03oA2gIR0CuxhkC3gDSdX2UKGgGR0CTiHNKh+OPaAdN6ANoCEdArscBS75EdHV9lChoBkdAlE7uq7yxzWgHTegDaAhHQK7HMjafzz51fZQoaAZHQJP9k6BAfMhoB03oA2gIR0CuyD/wy6+WdX2UKGgGR0CUvucry1/laAdN6ANoCEdArtgHRw6ySnV9lChoBkdAlQ7aw2VE/mgHTegDaAhHQK7Y51tfoid1fZQoaAZHQJWf6hi9ZidoB03oA2gIR0Cu2RZ88cMmdX2UKGgGR0CVqGKvmozfaAdN6ANoCEdArtolLUTcqXV9lChoBkdAlFRDoIOYpmgHTegDaAhHQK7lkraM72d1fZQoaAZHQJVEbkZJkG1oB03oA2gIR0Cu5n5X2dupdX2UKGgGR0CS4v+Eh7mdaAdN6ANoCEdAruax+KCQLnV9lChoBkdAlOav8Q7LdWgHTegDaAhHQK7n0Rh+fAd1fZQoaAZHQJWrYcyWRihoB03oA2gIR0Cu99VCPZIydX2UKGgGR0CVXTPVurIYaAdN6ANoCEdArvi7101ZT3V9lChoBkdAlAL+6Ae7tmgHTegDaAhHQK747Vf/m1Z1fZQoaAZHQJVbx6D5CWxoB03oA2gIR0Cu+fys0YTCdX2UKGgGR0CTuuedTYNBaAdN6ANoCEdArwU5OgxrSHV9lChoBkdAlBYRUvPC22gHTegDaAhHQK8GIL4N7Sl1fZQoaAZHQJVB+E/SpitoB03oA2gIR0CvBlD+irT6dX2UKGgGR0CUOVYVqN6xaAdN6ANoCEdArwdgEyLyc3V9lChoBkdAlcfUytV7yGgHTegDaAhHQK8W81+AmRh1fZQoaAZHQJOn3/Q0GeNoB03oA2gIR0CvGA53Tuv2dX2UKGgGR0CVO7YlY2bYaAdN6ANoCEdArxg/GIbfg3V9lChoBkdAkwlQdn0032gHTegDaAhHQK8ZTp8F6iV1fZQoaAZHQJX88C1Z1V5oB03oA2gIR0CvJK98JD3NdX2UKGgGR0CVwr1jAi3YaAdN6ANoCEdAryWPYQJ5V3V9lChoBkdAlCRZ1/2Cd2gHTegDaAhHQK8lxEuxrzp1fZQoaAZHQJVo8GVzIWBoB03oA2gIR0CvJtytvGZNdX2UKGgGR0CU3qvGp++eaAdN6ANoCEdArzYL/+85CHV9lChoBkdAlCvAOvt+kWgHTegDaAhHQK83g82aUiZ1fZQoaAZHQJO6EduHerNoB03oA2gIR0CvN9NNzr/sdX2UKGgGR0CUswptJnQIaAdN6ANoCEdArzjiOearm3V9lChoBkdAknB/O+qR2mgHTegDaAhHQK9E/JT2nKp1fZQoaAZHQJLIkYsNDtxoB03oA2gIR0CvRewAMlTndX2UKGgGR0CTTE0Y0l7daAdN6ANoCEdAr0YdT3qRl3V9lChoBkdAlTtSyyD7ImgHTegDaAhHQK9HL+DOC5F1fZQoaAZHQJPI+bz9S/FoB03oA2gIR0CvV26WX1J2dX2UKGgGR0CUGjsXzlLfaAdN6ANoCEdAr1kM2BJ7LXV9lChoBkdAlCRxk/bCamgHTegDaAhHQK9ZRylN1yN1fZQoaAZHQJRTTUkOZstoB03oA2gIR0CvWoCXIEKWdX2UKGgGR0CUsSgdOqNqaAdN6ANoCEdAr2cLXBguy3V9lChoBkdAlH0DNMXaamgHTegDaAhHQK9oBGiHqNZ1fZQoaAZHQJVDbpHI6sBoB03oA2gIR0CvaDxIJ7b+dX2UKGgGR0CTmSMw1zhhaAdN6ANoCEdAr2lfgm7aqXV9lChoBkdAlUgvFzdUKmgHTegDaAhHQK96jLRKHwh1fZQoaAZHQJSl+i+L3sZoB03oA2gIR0Cve6AOBlMAdX2UKGgGR0CT7/ZWq95AaAdN6ANoCEdAr3vZqEeyRnV9lChoBkdAlQUntWuHOGgHTegDaAhHQK99HoduHet1fZQoaAZHQJKOXZ6D5CZoB03oA2gIR0Cvihxl6JIldX2UKGgGR0CUL2lsguAaaAdN6ANoCEdAr4sYrFwT/XV9lChoBkdAk2gVlPJq7GgHTegDaAhHQK+LS+fRNRF1fZQoaAZHQJQOqGvfTCtoB03oA2gIR0CvjGthE0BPdX2UKGgGR0CWWqNOuaF3aAdN6ANoCEdAr5009hZyMnV9lChoBkdAlFoXS8an8GgHTegDaAhHQK+eHtBv73x1fZQoaAZHQJSNsNBnjABoB03oA2gIR0CvnlUeMhoudX2UKGgGR0CVjTVurIYFaAdN6ANoCEdAr59xjSXt0HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}