c72599 commited on
Commit
c0de0ac
1 Parent(s): dcec759

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -18
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.84
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.5915
36
- - Accuracy: 0.84
37
 
38
  ## Model description
39
 
@@ -53,30 +53,50 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 4
57
- - eval_batch_size: 4
58
  - seed: 42
59
- - gradient_accumulation_steps: 2
60
- - total_train_batch_size: 8
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 10
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 1.9842 | 1.0 | 112 | 1.8316 | 0.3 |
71
- | 1.5556 | 2.0 | 225 | 1.4607 | 0.51 |
72
- | 1.1784 | 3.0 | 337 | 1.2548 | 0.52 |
73
- | 0.8821 | 4.0 | 450 | 1.1416 | 0.61 |
74
- | 0.9141 | 5.0 | 562 | 1.0491 | 0.64 |
75
- | 0.7517 | 6.0 | 675 | 0.8565 | 0.73 |
76
- | 0.7526 | 7.0 | 787 | 0.7474 | 0.78 |
77
- | 0.3974 | 8.0 | 900 | 0.7273 | 0.78 |
78
- | 0.444 | 9.0 | 1012 | 0.5932 | 0.84 |
79
- | 0.6686 | 9.96 | 1120 | 0.5915 | 0.84 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
 
82
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.88
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6645
36
+ - Accuracy: 0.88
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
  - seed: 42
59
+ - gradient_accumulation_steps: 8
60
+ - total_train_batch_size: 16
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 30
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.2685 | 1.0 | 56 | 2.2069 | 0.44 |
71
+ | 2.0208 | 1.99 | 112 | 1.8352 | 0.46 |
72
+ | 1.7603 | 2.99 | 168 | 1.5275 | 0.49 |
73
+ | 1.4843 | 4.0 | 225 | 1.4296 | 0.52 |
74
+ | 1.347 | 5.0 | 281 | 1.2222 | 0.52 |
75
+ | 1.2364 | 5.99 | 337 | 1.1477 | 0.62 |
76
+ | 1.2082 | 6.99 | 393 | 1.0181 | 0.67 |
77
+ | 0.9861 | 8.0 | 450 | 0.9598 | 0.71 |
78
+ | 0.752 | 9.0 | 506 | 0.7499 | 0.77 |
79
+ | 1.006 | 9.99 | 562 | 0.8190 | 0.79 |
80
+ | 0.6725 | 10.99 | 618 | 0.8798 | 0.75 |
81
+ | 0.7457 | 12.0 | 675 | 0.6276 | 0.81 |
82
+ | 0.4605 | 13.0 | 731 | 0.6086 | 0.85 |
83
+ | 0.5751 | 13.99 | 787 | 0.6894 | 0.75 |
84
+ | 0.4886 | 14.99 | 843 | 0.6109 | 0.83 |
85
+ | 0.2429 | 16.0 | 900 | 0.6076 | 0.85 |
86
+ | 0.3084 | 17.0 | 956 | 0.4646 | 0.86 |
87
+ | 0.3762 | 17.99 | 1012 | 0.8349 | 0.81 |
88
+ | 0.2897 | 18.99 | 1068 | 0.4509 | 0.89 |
89
+ | 0.1296 | 20.0 | 1125 | 0.6791 | 0.86 |
90
+ | 0.1291 | 21.0 | 1181 | 0.6466 | 0.85 |
91
+ | 0.3784 | 21.99 | 1237 | 0.6272 | 0.88 |
92
+ | 0.1156 | 22.99 | 1293 | 0.7916 | 0.85 |
93
+ | 0.2093 | 24.0 | 1350 | 0.6536 | 0.85 |
94
+ | 0.2167 | 25.0 | 1406 | 0.7050 | 0.87 |
95
+ | 0.1095 | 25.99 | 1462 | 0.6128 | 0.88 |
96
+ | 0.1004 | 26.99 | 1518 | 0.6092 | 0.89 |
97
+ | 0.0897 | 28.0 | 1575 | 0.6730 | 0.88 |
98
+ | 0.083 | 29.0 | 1631 | 0.6396 | 0.89 |
99
+ | 0.0343 | 29.87 | 1680 | 0.6645 | 0.88 |
100
 
101
 
102
  ### Framework versions