update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -53,30 +53,50 @@ More information needed
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps:
|
60 |
-
- total_train_batch_size:
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
| 1.
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.88
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6645
|
36 |
+
- Accuracy: 0.88
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 2
|
57 |
+
- eval_batch_size: 2
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 8
|
60 |
+
- total_train_batch_size: 16
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 30
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.2685 | 1.0 | 56 | 2.2069 | 0.44 |
|
71 |
+
| 2.0208 | 1.99 | 112 | 1.8352 | 0.46 |
|
72 |
+
| 1.7603 | 2.99 | 168 | 1.5275 | 0.49 |
|
73 |
+
| 1.4843 | 4.0 | 225 | 1.4296 | 0.52 |
|
74 |
+
| 1.347 | 5.0 | 281 | 1.2222 | 0.52 |
|
75 |
+
| 1.2364 | 5.99 | 337 | 1.1477 | 0.62 |
|
76 |
+
| 1.2082 | 6.99 | 393 | 1.0181 | 0.67 |
|
77 |
+
| 0.9861 | 8.0 | 450 | 0.9598 | 0.71 |
|
78 |
+
| 0.752 | 9.0 | 506 | 0.7499 | 0.77 |
|
79 |
+
| 1.006 | 9.99 | 562 | 0.8190 | 0.79 |
|
80 |
+
| 0.6725 | 10.99 | 618 | 0.8798 | 0.75 |
|
81 |
+
| 0.7457 | 12.0 | 675 | 0.6276 | 0.81 |
|
82 |
+
| 0.4605 | 13.0 | 731 | 0.6086 | 0.85 |
|
83 |
+
| 0.5751 | 13.99 | 787 | 0.6894 | 0.75 |
|
84 |
+
| 0.4886 | 14.99 | 843 | 0.6109 | 0.83 |
|
85 |
+
| 0.2429 | 16.0 | 900 | 0.6076 | 0.85 |
|
86 |
+
| 0.3084 | 17.0 | 956 | 0.4646 | 0.86 |
|
87 |
+
| 0.3762 | 17.99 | 1012 | 0.8349 | 0.81 |
|
88 |
+
| 0.2897 | 18.99 | 1068 | 0.4509 | 0.89 |
|
89 |
+
| 0.1296 | 20.0 | 1125 | 0.6791 | 0.86 |
|
90 |
+
| 0.1291 | 21.0 | 1181 | 0.6466 | 0.85 |
|
91 |
+
| 0.3784 | 21.99 | 1237 | 0.6272 | 0.88 |
|
92 |
+
| 0.1156 | 22.99 | 1293 | 0.7916 | 0.85 |
|
93 |
+
| 0.2093 | 24.0 | 1350 | 0.6536 | 0.85 |
|
94 |
+
| 0.2167 | 25.0 | 1406 | 0.7050 | 0.87 |
|
95 |
+
| 0.1095 | 25.99 | 1462 | 0.6128 | 0.88 |
|
96 |
+
| 0.1004 | 26.99 | 1518 | 0.6092 | 0.89 |
|
97 |
+
| 0.0897 | 28.0 | 1575 | 0.6730 | 0.88 |
|
98 |
+
| 0.083 | 29.0 | 1631 | 0.6396 | 0.89 |
|
99 |
+
| 0.0343 | 29.87 | 1680 | 0.6645 | 0.88 |
|
100 |
|
101 |
|
102 |
### Framework versions
|