cajcodes's picture
Upload 5 files
b1581fb verified
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from collections import deque
import random
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import heapq # For the A* algorithm
from huggingface_hub import HfApi, HfFolder # Hugging Face API
# Function to generate a floorplan
def generate_floorplan(size=10, obstacle_density=0.2):
floorplan = [[0 for _ in range(size)] for _ in range(size)]
target_x, target_y = size - 1, size - 1
floorplan[target_x][target_y] = 2 # Mark target position
num_obstacles = int(size * size * obstacle_density)
for _ in range(num_obstacles):
x = random.randint(0, size - 1)
y = random.randint(0, size - 1)
if floorplan[x][y] == 0 and (x, y) != (0, 0):
floorplan[x][y] = 1 # Mark obstacle
return floorplan, target_x, target_y
def a_star(floorplan, start, goal):
size = len(floorplan)
open_set = []
heapq.heappush(open_set, (0, start))
came_from = {}
g_score = {start: 0}
f_score = {start: heuristic(start, goal)}
while open_set:
_, current = heapq.heappop(open_set)
if current == goal:
return reconstruct_path(came_from, current)
neighbors = get_neighbors(current, size)
for neighbor in neighbors:
if floorplan[neighbor[0]][neighbor[1]] == 1:
continue # Ignore obstacles
tentative_g_score = g_score[current] + 1
if neighbor not in g_score or tentative_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = g_score[neighbor] + heuristic(neighbor, goal)
heapq.heappush(open_set, (f_score[neighbor], neighbor))
return []
def heuristic(a, b):
return abs(a[0] - b[0]) + abs(a[1] - b[1])
def get_neighbors(pos, size):
neighbors = []
x, y = pos
if x > 0:
neighbors.append((x - 1, y))
if x < size - 1:
neighbors.append((x + 1, y))
if y > 0:
neighbors.append((x, y - 1))
if y < size - 1:
neighbors.append((x, y + 1))
return neighbors
def reconstruct_path(came_from, current):
path = [current]
while current in came_from:
current = came_from[current]
path.append(current)
return path[::-1]
class Environment:
def __init__(self, size=10, obstacle_density=0.2):
self.size = size
self.floorplan, self.target_x, self.target_y = generate_floorplan(size, obstacle_density)
self.robot_x = 0
self.robot_y = 0
def reset(self):
while True:
self.robot_x = random.randint(0, self.size - 1)
self.robot_y = random.randint(0, self.size - 1)
if self.floorplan[self.robot_x][self.robot_y] == 0:
break
return self.get_cnn_state()
def step(self, action):
new_x, new_y = self.robot_x, self.robot_y
if action == 0: # Up
new_x = max(self.robot_x - 1, 0)
elif action == 1: # Down
new_x = min(self.robot_x + 1, self.size - 1)
elif action == 2: # Left
new_y = max(self.robot_y - 1, 0)
elif action == 3: # Right
new_y = min(self.robot_y + 1, self.size - 1)
# Check if the new position is an obstacle
if self.floorplan[new_x][new_y] != 1:
self.robot_x, self.robot_y = new_x, new_y
done = (self.robot_x == self.target_x and self.robot_y == self.target_y)
reward = self.get_reward(self.robot_x, self.robot_y)
next_state = self.get_cnn_state()
info = {}
return next_state, reward, done, info
def get_reward(self, robot_x, robot_y):
if self.floorplan[robot_x][robot_y] == 1:
return -5 # Penalty for hitting an obstacle
elif robot_x == self.target_x and robot_y == self.target_y:
return 10 # Reward for reaching the target
else:
return -0.1 # Penalty for each step
def get_cnn_state(self):
grid = [row[:] for row in self.floorplan]
grid[self.robot_x][self.robot_y] = 3 # Mark the robot's current position
return np.array(grid).flatten()
def render(self, path=None):
grid = np.array(self.floorplan)
fig, ax = plt.subplots()
ax.set_xticks(np.arange(-0.5, self.size, 1))
ax.set_yticks(np.arange(-0.5, self.size, 1))
ax.grid(which='major', color='k', linestyle='-', linewidth=1)
ax.tick_params(which='both', bottom=False, left=False, labelbottom=False, labelleft=False)
def update(i):
ax.clear()
ax.imshow(grid, cmap='Greys', interpolation='nearest')
if path:
x, y = path[i]
ax.plot(y, x, 'bo') # Draw robot's path
plt.draw()
ani = animation.FuncAnimation(fig, update, frames=len(path), repeat=False)
plt.show()
class DQN(nn.Module):
def __init__(self, input_size, hidden_sizes, output_size):
super(DQN, self).__init__()
self.input_size = input_size
self.hidden_sizes = hidden_sizes
self.output_size = output_size
self.fc_layers = nn.ModuleList()
prev_size = input_size
for size in hidden_sizes:
self.fc_layers.append(nn.Linear(prev_size, size))
prev_size = size
self.output_layer = nn.Linear(prev_size, output_size)
def forward(self, x):
if len(x.shape) > 2:
x = x.view(x.size(0), -1)
for layer in self.fc_layers:
x = F.relu(layer(x))
x = self.output_layer(x)
return x
def choose_action(self, state):
with torch.no_grad():
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
q_values = self(state_tensor)
action = q_values.argmax().item()
return action
class ReplayBuffer:
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
return states, actions, rewards, next_states, dones
def __len__(self):
return len(self.buffer)
# Function to save the model checkpoint
def save_checkpoint(state, filename="checkpoint.pth.tar"):
torch.save(state, filename)
# Function to load the model checkpoint
def load_checkpoint(filename):
checkpoint = torch.load(filename)
return checkpoint
# Training the DQN
env = Environment()
input_size = env.size * env.size # Flattened grid size
hidden_sizes = [64, 64] # Hidden layer sizes
output_size = 4 # Number of actions (up, down, left, right)
dqn = DQN(input_size, hidden_sizes, output_size)
dqn_target = DQN(input_size, hidden_sizes, output_size)
dqn_target.load_state_dict(dqn.state_dict())
optimizer = optim.Adam(dqn.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
replay_buffer = ReplayBuffer(10000)
num_episodes = 50
batch_size = 64
gamma = 0.99
target_update_freq = 100
checkpoint_freq = 10 # Save checkpoint every 10 episodes
losses = []
for episode in range(num_episodes):
state = env.reset()
total_reward = 0
done = False
# Integrate A* guidance for initial exploration
initial_path = a_star(env.floorplan, (env.robot_x, env.robot_y), (env.target_x, env.target_y))
path_index = 0
while not done:
epsilon = max(0.01, 0.2 - 0.01 * (episode / 2))
if np.random.rand() < epsilon:
if initial_path and path_index < len(initial_path):
next_pos = initial_path[path_index]
if next_pos[0] < env.robot_x:
action = 0 # Up
elif next_pos[0] > env.robot_x:
action = 1 # Down
elif next_pos[1] < env.robot_y:
action = 2 # Left
else:
action = 3 # Right
path_index += 1
else:
action = np.random.randint(output_size)
else:
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
q_values = dqn(state_tensor)
action = q_values.argmax().item()
next_state, reward, done, _ = env.step(action)
replay_buffer.push(state, action, reward, next_state, done)
if len(replay_buffer) > batch_size:
states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)
states = torch.tensor(states, dtype=torch.float32)
actions = torch.tensor(actions, dtype=torch.int64)
rewards = torch.tensor(rewards, dtype=torch.float32)
next_states = torch.tensor(next_states, dtype=torch.float32)
dones = torch.tensor(dones, dtype=torch.float32)
q_values = dqn(states)
q_values = q_values.gather(1, actions.unsqueeze(1)).squeeze(1)
with torch.no_grad():
next_q_values = dqn(next_states)
next_q_values = next_q_values.max(1)[0]
target_q_values = rewards + (1 - dones) * gamma * next_q_values
loss = F.smooth_l1_loss(q_values, target_q_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())
total_reward += reward
state = next_state
if episode % target_update_freq == 0:
dqn_target.load_state_dict(dqn.state_dict())
scheduler.step()
# Save checkpoints
if episode % checkpoint_freq == 0 or episode == num_episodes - 1:
checkpoint = {
'episode': episode + 1,
'state_dict': dqn.state_dict(),
'optimizer': optimizer.state_dict(),
'losses': losses
}
save_checkpoint(checkpoint, f'checkpoint_{episode + 1}.pth.tar')
print(f"Episode {episode + 1}: Total Reward = {total_reward}, Loss = {np.mean(losses[-batch_size:]) if losses else None}")
# Save the final model
torch.save(dqn.state_dict(), 'dqn_model.pth')
# Load the trained model
dqn = DQN(input_size, hidden_sizes, output_size)
dqn.load_state_dict(torch.load('dqn_model.pth'))
dqn.eval()
# Simulate the bot's path using the trained DQN agent
state = env.reset()
done = False
path = [(env.robot_x, env.robot_y)]
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
q_values = dqn(state_tensor)
action = q_values.argmax().item() # Choose action from the trained DQN
next_state, reward, done, _ = env.step(action)
path.append((env.robot_x, env.robot_y))
state = next_state
# Render the environment and the bot's path
env.render(path)
# Evaluate trained DQN
def evaluate_agent(env, agent, num_episodes=5):
total_rewards = 0
successful_episodes = 0
for episode in range(num_episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
total_rewards += episode_reward
if episode_reward > 0:
successful_episodes += 1
avg_reward = total_rewards / num_episodes
success_rate = successful_episodes / num_episodes
print("Evaluation Results:")
print(f"Average Reward: {avg_reward}")
print(f"Success Rate: {success_rate}")
return avg_reward, success_rate
# Call the evaluation function after rendering
avg_reward, success_rate = evaluate_agent(env, dqn, num_episodes=5)
# Upload the model to Hugging Face
# Authenticate with Hugging Face API
api = HfApi()
api_token = HfFolder.get_token() # Ensure you have logged in with `huggingface-cli login`
# Create a model repository if it doesn't exist
model_repo = 'cajcodes/dqn-floorplan-finder'
api.create_repo(repo_id=model_repo, exist_ok=True)
# Upload the model
api.upload_file(
path_or_fileobj='dqn_model.pth',
path_in_repo='dqn_model.pth',
repo_id=model_repo
)