model update
Browse files- README.md +73 -0
- metric_summary.json +1 -0
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- cardiffnlp/tweet_topic_single
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: text-classification
|
12 |
+
name: Text Classification
|
13 |
+
dataset:
|
14 |
+
name: cardiffnlp/tweet_topic_single
|
15 |
+
type: cardiffnlp/tweet_topic_single
|
16 |
+
args: cardiffnlp/tweet_topic_single
|
17 |
+
split: test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.03130537507383343
|
22 |
+
- name: F1 (macro)
|
23 |
+
type: f1_macro
|
24 |
+
value: 0.011682073096465156
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.03130537507383343
|
28 |
+
pipeline_tag: text-classification
|
29 |
+
widget:
|
30 |
+
- text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys"
|
31 |
+
example_title: "Example 1"
|
32 |
+
- text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US."
|
33 |
+
example_title: "Example 2"
|
34 |
+
---
|
35 |
+
# cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all
|
36 |
+
|
37 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic.
|
38 |
+
Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set:
|
39 |
+
|
40 |
+
- F1 (micro): 0.03130537507383343
|
41 |
+
- F1 (macro): 0.011682073096465156
|
42 |
+
- Accuracy: 0.03130537507383343
|
43 |
+
|
44 |
+
|
45 |
+
### Usage
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import pipeline
|
49 |
+
|
50 |
+
pipe = pipeline("text-classification", "cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all")
|
51 |
+
topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.")
|
52 |
+
print(topic)
|
53 |
+
```
|
54 |
+
|
55 |
+
### Reference
|
56 |
+
```
|
57 |
+
|
58 |
+
@inproceedings{dimosthenis-etal-2022-twitter,
|
59 |
+
title = "{T}witter {T}opic {C}lassification",
|
60 |
+
author = "Antypas, Dimosthenis and
|
61 |
+
Ushio, Asahi and
|
62 |
+
Camacho-Collados, Jose and
|
63 |
+
Neves, Leonardo and
|
64 |
+
Silva, Vitor and
|
65 |
+
Barbieri, Francesco",
|
66 |
+
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
67 |
+
month = oct,
|
68 |
+
year = "2022",
|
69 |
+
address = "Gyeongju, Republic of Korea",
|
70 |
+
publisher = "International Committee on Computational Linguistics"
|
71 |
+
}
|
72 |
+
|
73 |
+
```
|
metric_summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test/eval_loss": 1.8547085523605347, "test/eval_f1": 0.03130537507383343, "test/eval_f1_macro": 0.011682073096465156, "test/eval_accuracy": 0.03130537507383343, "test/eval_runtime": 53.0779, "test/eval_samples_per_second": 31.897, "test/eval_steps_per_second": 1.997}
|