antypasd commited on
Commit
3d440b6
1 Parent(s): 61bf140

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -16
README.md CHANGED
@@ -3,28 +3,32 @@ model-index:
3
  - name: twitter-roberta-base-hate-latest
4
  results: []
5
  pipeline_tag: text-classification
 
 
6
  ---
7
  # cardiffnlp/twitter-roberta-base-hate-latest
8
 
9
  This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m) for binary hate-speech classification. A combination of 13 different hate-speech datasets in the English language were used to fine-tune the model.
10
 
11
  ## Following metrics are achieved
12
- | **Dataset** | **Accuracy** | **Macro-F1** | **Weighted-F1** |
13
- |------------------------------------------------------------------------------------------------------------------------------------------------------|:------------:|:------------:|:---------------:|
14
- | hatEval, SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter | 0.5848 | 0.5657 | 0.5514 |
15
- | ucberkeley-dlab/measuring-hate-speech | 0.8706 | 0.8531 | 0.8701 |
16
- | Detecting East Asian Prejudice on Social Media | 0.9276 | 0.8935 | 0.9273 |
17
- | Call me sexist, but | 0.9033 | 0.6288 | 0.8852 |
18
- | Predicting the Type and Target of Offensive Posts in Social Media | 0.9075 | 0.5984 | 0.8935 |
19
- | HateXplain | 0.9594 | 0.8024 | 0.9600 |
20
- | Large Scale Crowdsourcing and Characterization of Twitter Abusive BehaviorLarge Scale Crowdsourcing and Characterization of Twitter Abusive Behavior | 0.6817 | 0.5939 | 0.6233 |
21
- | Twitter Sentiment Analysis | 0.9808 | 0.9258 | 0.9807 |
22
- | Overview of the HASOC track at FIRE 2019:Hate Speech and Offensive Content Identification in Indo-European Languages | 0.8665 | 0.5562 | 0.8343 |
23
- | Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter | 0.9465 | 0.8557 | 0.9440 |
24
- | Automated Hate Speech Detection and the Problem of Offensive Language | 0.9116 | 0.8797 | 0.9100 |
25
- | Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter | 0.8378 | 0.8338 | 0.8385 |
26
- | Multilingual and Multi-Aspect Hate Speech Analysis | 0.9655 | 0.4912 | 0.9824 |
27
- | **Overall** | **0.8827** | **0.8383** | **0.8842** |
 
 
28
 
29
 
30
  ### Usage
@@ -39,4 +43,17 @@ model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-hate-latest")
39
  model.predict('I love everybody :)')
40
  >> {'label': 'NOT-HATE'}
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ```
 
3
  - name: twitter-roberta-base-hate-latest
4
  results: []
5
  pipeline_tag: text-classification
6
+ language:
7
+ - en
8
  ---
9
  # cardiffnlp/twitter-roberta-base-hate-latest
10
 
11
  This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m) for binary hate-speech classification. A combination of 13 different hate-speech datasets in the English language were used to fine-tune the model.
12
 
13
  ## Following metrics are achieved
14
+
15
+ | **Dataset** | **Accuracy** | **Macro-F1** | **Weighted-F1** |
16
+ |:----------|-----------:|-----------:|--------------:|
17
+ | hatEval, SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter | 0.5831 | 0.5646 | 0.548 |
18
+ | ucberkeley-dlab/measuring-hate-speech | 0.9273 | 0.9193 | 0.928 |
19
+ | Detecting East Asian Prejudice on Social Media | 0.9231 | 0.6623 | 0.9428 |
20
+ | Call me sexist, but | 0.9686 | 0.9203 | 0.9696 |
21
+ | Predicting the Type and Target of Offensive Posts in Social Media | 0.9164 | 0.6847 | 0.9098 |
22
+ | HateXplain | 0.8653 | 0.845 | 0.8662 |
23
+ | Large Scale Crowdsourcing and Characterization of Twitter Abusive BehaviorLarge Scale Crowdsourcing and Characterization of Twitter Abusive Behavior | 0.7801 | 0.7446 | 0.7614 |
24
+ | Multilingual and Multi-Aspect Hate Speech Analysis | 0.9944 | 0.4986 | 0.9972 |
25
+ | Hate speech and offensive content identification in indo-european languages | 0.8779 | 0.6904 | 0.8706 |
26
+ | Are You a Racist or Am I Seeing Things? | 0.921 | 0.8935 | 0.9216 |
27
+ | Automated Hate Speech Detection | 0.9423 | 0.9249 | 0.9429 |
28
+ | Hate Towards the Political Opponent | 0.8783 | 0.6595 | 0.8788 |
29
+ | Hateful Symbols or Hateful People? | 0.8187 | 0.7833 | 0.8323 |
30
+ | **Overall** | **0.8766** | **0.7531** | **0.8745** |
31
+
32
 
33
 
34
  ### Usage
 
43
  model.predict('I love everybody :)')
44
  >> {'label': 'NOT-HATE'}
45
 
46
+ ```
47
+
48
+
49
+ ### Model based on:
50
+ ```
51
+ @misc{antypas2023robust,
52
+ title={Robust Hate Speech Detection in Social Media: A Cross-Dataset Empirical Evaluation},
53
+ author={Dimosthenis Antypas and Jose Camacho-Collados},
54
+ year={2023},
55
+ eprint={2307.01680},
56
+ archivePrefix={arXiv},
57
+ primaryClass={cs.CL}
58
+ }
59
  ```