--- library_name: transformers base_model: motheecreator/vit-Facial-Expression-Recognition tags: - generated_from_trainer metrics: - accuracy model-index: - name: RAFDB-Facial-Expression-Recognition results: [] --- # RAFDB-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5251 - Accuracy: 0.8198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.0294 | 2.0833 | 100 | 1.7424 | 0.4547 | | 0.8701 | 4.1667 | 200 | 0.7676 | 0.7324 | | 0.6327 | 6.25 | 300 | 0.5953 | 0.7934 | | 0.5058 | 8.3333 | 400 | 0.5574 | 0.8106 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3