--- library_name: transformers base_model: carlosleao/vit-Facial-Expression-Recognition tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-Facial-Expression-Recognition results: [] --- # vit-Facial-Expression-Recognition This model is a fine-tuned version of [carlosleao/vit-Facial-Expression-Recognition](https://huggingface.co/carlosleao/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5831 - Accuracy: 0.4234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.7711 | 2.0833 | 100 | 1.7038 | 0.3915 | | 1.5964 | 4.1667 | 200 | 1.5836 | 0.3957 | | 1.5002 | 6.25 | 300 | 1.5438 | 0.4113 | | 1.3591 | 8.3333 | 400 | 1.5690 | 0.4016 | | 1.1821 | 10.4167 | 500 | 1.5831 | 0.4234 | | 0.9323 | 12.5 | 600 | 1.7256 | 0.3960 | | 0.7237 | 14.5833 | 700 | 1.8623 | 0.3954 | | 0.5376 | 16.6667 | 800 | 2.0238 | 0.3742 | | 0.363 | 18.75 | 900 | 2.1839 | 0.3462 | | 0.238 | 20.8333 | 1000 | 2.2616 | 0.3602 | | 0.1686 | 22.9167 | 1100 | 2.3515 | 0.3758 | | 0.0952 | 25.0 | 1200 | 2.4730 | 0.3836 | | 0.0526 | 27.0833 | 1300 | 2.5531 | 0.3898 | | 0.0399 | 29.1667 | 1400 | 2.5901 | 0.3778 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1