File size: 16,614 Bytes
85a0876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from flash_attn import flash_attn_with_kvcache
from mamba_ssm.models.mixer_seq_simple import _init_weights
from mamba_ssm.modules.mamba2 import Mamba2
from mamba_ssm.modules.mha import _update_kv_cache
from mamba_ssm.utils.generation import GenerationMixin as MambaGenerationMixin
from transformers.modeling_outputs import CausalLMOutput
from transformers.modeling_utils import PreTrainedModel
from .configuration_rene import ReneConfig
class ReneMLP(nn.Module):
"""One-hidden-layer network with GELU activation.
Args:
d_input: Block input dimension.
d_output: Block output dimension.
expand: Block expansion factor.
bias: Use biases in linear layers.
"""
def __init__(self, d_input, d_output=None, expand=3, bias=True, device=None, dtype=None):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.d_input = d_input
self.d_output = d_input if d_output is None else d_output
self.d_inner = int(round(expand * d_input))
self.in_proj = nn.Linear(self.d_input, self.d_inner, bias=bias, **factory_kwargs)
self.activation = nn.GELU()
self.out_proj = nn.Linear(self.d_inner, self.d_input, bias=bias, **factory_kwargs)
def forward(self, x, inference_params=None):
"""Forward pass through the MLP module."""
y = self.in_proj(x)
y = self.activation(y)
y = self.out_proj(y)
return y
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
"""Allocate inference cache for ReneMLP. (There is nothing to cache for this module)."""
return None
class ReneMHA(nn.Module):
"""Multi-head self-attention. Adapted from mamba_ssm MHA class."""
def __init__(
self,
embed_dim,
num_heads,
num_heads_kv=None,
head_dim=None, # If None, use embed_dim // num_heads
qkv_proj_bias=True,
out_proj_bias=True,
softmax_scale=None,
causal=True,
sliding_window_length=None, # If None, infinite context
layer_idx=None,
device=None,
dtype=None,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.embed_dim = embed_dim
self.layer_idx = layer_idx
self.softmax_scale = softmax_scale
self.causal = causal
assert self.causal, "Rene does not yet support non-causal modeling"
self.num_heads = num_heads
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
if head_dim is None:
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.head_dim = head_dim if head_dim is not None else self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
out_dim = self.head_dim * self.num_heads
self.sliding_window_length = sliding_window_length
if self.sliding_window_length is None:
self.window_size = (-1, -1)
else:
self.window_size = (self.sliding_window_length - 1, 0) # for flash_attn
self.in_proj = nn.Linear(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
self.out_proj = nn.Linear(out_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
"""Allocate inference cache for the multi-head self-attention module."""
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
kv_cache = torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv,
self.head_dim,
dtype=dtype,
device=device,
)
return kv_cache, None
def _pytorch_attn(self, q, kv):
k, v = kv.unbind(dim=-3)
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv)
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv)
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
L, S = q.size(-2), k.size(-2)
if S > self.sliding_window_length:
attn_mask = (
torch.ones(L, S, dtype=torch.bool)
.tril(diagonal=0)
.triu(-self.window_size[0])
.to(device=q.device)
)
# Since we pass in an attn_mask explicitly, we need to pass is_causal=False to
# `scaled_dot_product_attention` (even though the attn_mask itself is in fact causal).
is_causal_arg = False
else:
# The previous branch would also handle this case correctly, but it is more efficient
# to omit the attn_mask when we don't need it.
attn_mask = None
is_causal_arg = True
return F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, is_causal=is_causal_arg, scale=self.softmax_scale
).transpose(1, 2)
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)."""
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _update_kvcache_attention(self, q, kv, inference_params):
"""Write kv to inference_params, then compute attention."""
if inference_params.seqlen_offset == 0 or flash_attn_with_kvcache is None:
# TODO: this only uses seqlen_offset and not lengths_per_sample.
kv = self._update_kv_cache(kv, inference_params)
return self._pytorch_attn(q, kv)
else:
batch = q.shape[0]
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
kv_cache = kv_cache[:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
return flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
cache_seqlens=cache_seqlens,
softmax_scale=self.softmax_scale,
causal=self.causal,
window_size=self.window_size,
)
def forward(self, x, inference_params=None):
"""Forward pass through the multi-head self-attention module."""
if (
inference_params is not None
and self.layer_idx not in inference_params.key_value_memory_dict
):
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache(
x.shape[0], inference_params.max_seqlen, dtype=x.dtype
)
qkv = self.in_proj(x)
q, kv = qkv.split(
[self.num_heads * self.head_dim, self.num_heads_kv * 2 * self.head_dim], dim=-1
)
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
if inference_params is None:
context = self._pytorch_attn(q, kv)
else:
context = self._update_kvcache_attention(q, kv, inference_params)
context = rearrange(context, "... h d -> ... (h d)")
out = self.out_proj(context)
return out
class Block(nn.Module):
"""Simple residual block with normalization that wraps an inner "mixer" module."""
def __init__(self, dim, mixer_cls, norm_cls=nn.LayerNorm, residual_in_fp32=False):
"""
dim: The dimension of the input data.
mixer_cls: The class of the mixer module.
norm_cls: The class of the normalization module.
residual_in_fp32: Whether to keep residuals in fp32.
"""
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.norm = norm_cls(dim)
self.mixer = mixer_cls(dim)
def forward(self, x, inference_params=None, **mixer_kwargs):
"""Forward pass through the block."""
y = self.norm(x.to(dtype=self.norm.weight.dtype))
y = self.mixer(y, inference_params=inference_params, **mixer_kwargs)
residual = x
if self.residual_in_fp32:
residual = residual.to(torch.float32)
y = y + residual
y = y.to(dtype=x.dtype)
return y
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
"""Allocate inference cache for the mixer module."""
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
def _create_block(
d_model,
norm_cls,
ssm_cfg=None,
attn_layer_idx=None,
attn_cfg=None,
mlp_layer_idx=None,
mlp_cfg=None,
residual_in_fp32=False,
layer_idx=None,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
if ssm_cfg is None:
ssm_cfg = {}
if attn_layer_idx is None:
attn_layer_idx = []
if attn_cfg is None:
attn_cfg = {}
if mlp_layer_idx is None:
mlp_layer_idx = []
if mlp_cfg is None:
mlp_cfg = {}
if layer_idx in attn_layer_idx:
mixer_cls = partial(ReneMHA, layer_idx=layer_idx, **attn_cfg, **factory_kwargs)
elif layer_idx in mlp_layer_idx:
mixer_cls = partial(ReneMLP, **mlp_cfg, **factory_kwargs)
else:
mixer_cls = partial(Mamba2, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
return Block(d_model, mixer_cls, norm_cls=norm_cls, residual_in_fp32=residual_in_fp32)
class MixerModel(nn.Module):
"""Adapted from mamba_ssm.models.mixer_seq_simple.MixerModel."""
def __init__(
self,
d_model: int,
n_layer: int,
vocab_size: int,
ssm_cfg=None,
attn_layer_idx=None,
attn_cfg=None,
mlp_layer_idx=None,
mlp_cfg=None,
norm_epsilon: float = 1e-5,
rms_norm: bool = False,
initializer_cfg=None,
residual_in_fp32=False,
device=None,
dtype=None,
) -> None:
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.residual_in_fp32 = residual_in_fp32
if rms_norm:
from mamba_ssm.ops.triton.layer_norm import RMSNorm as norm_cls_base
else:
norm_cls_base = nn.LayerNorm
norm_cls = partial(norm_cls_base, eps=norm_epsilon, **factory_kwargs)
self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
self.layers = nn.ModuleList(
[
_create_block(
d_model,
norm_cls=norm_cls,
ssm_cfg=ssm_cfg,
attn_layer_idx=attn_layer_idx,
attn_cfg=attn_cfg,
mlp_layer_idx=mlp_layer_idx,
mlp_cfg=mlp_cfg,
residual_in_fp32=residual_in_fp32,
layer_idx=i,
**factory_kwargs,
)
for i in range(n_layer)
]
)
self.norm_f = norm_cls(d_model)
self.apply(
partial(
_init_weights,
n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {}),
n_residuals_per_layer=1,
)
)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
"""Allocate inference cache for all layers."""
return {
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
for i, layer in enumerate(self.layers)
}
def forward(self, input_ids, inference_params=None, **mixer_kwargs):
"""Forward pass through the model."""
hidden_states = self.embedding(input_ids)
for layer in self.layers:
hidden_states = layer(hidden_states, inference_params=inference_params, **mixer_kwargs)
hidden_states = self.norm_f(hidden_states.to(dtype=self.norm_f.weight.dtype))
return hidden_states
class ReneLMHeadModel(PreTrainedModel, MambaGenerationMixin):
"""
Rene language model architecture.
Based on mamba_ssm.models.mixer_seq_simple.MambaLMHeadModel, with several adaptations.
"""
config_class = ReneConfig
base_model_prefix = "backbone"
_no_split_modules = ["Block", "Mamba2"]
supports_gradient_checkpointing = True
_is_stateful = True
_tied_weights_keys = ["lm_head.weight"]
def __init__(
self,
config: ReneConfig,
initializer_cfg=None,
device=None,
dtype=None,
) -> None:
super().__init__(config)
d_model = config.d_model
n_layer = config.n_layer
vocab_size = config.vocab_size
ssm_cfg = config.ssm_cfg
attn_layer_idx = config.attn_layer_idx
attn_cfg = config.attn_cfg
mlp_layer_idx = config.mlp_layer_idx
mlp_cfg = config.mlp_cfg
rms_norm = config.rms_norm
residual_in_fp32 = config.residual_in_fp32
pad_vocab_size_multiple = config.pad_vocab_size_multiple
factory_kwargs = {"device": device, "dtype": dtype}
if set(attn_layer_idx).intersection(mlp_layer_idx):
raise ValueError(f"Conflicting {attn_layer_idx=} and {mlp_layer_idx=}")
if vocab_size % pad_vocab_size_multiple != 0:
vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
self.backbone = MixerModel(
d_model=d_model,
n_layer=n_layer,
vocab_size=vocab_size,
ssm_cfg=ssm_cfg,
attn_layer_idx=attn_layer_idx,
attn_cfg=attn_cfg,
mlp_layer_idx=mlp_layer_idx,
mlp_cfg=mlp_cfg,
rms_norm=rms_norm,
initializer_cfg=initializer_cfg,
residual_in_fp32=residual_in_fp32,
**factory_kwargs,
)
self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs)
# Initialize weights
self.apply(
partial(
_init_weights,
n_layer=n_layer,
**(initializer_cfg if initializer_cfg is not None else {}),
)
)
self.tie_weights()
def tie_weights(self):
"""Tie embeddings and softmax layer weights if specified by config."""
if self.config.tie_word_embeddings:
self.lm_head.weight = self.backbone.embedding.weight
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
"""Allocate inference cache."""
return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
def forward(
self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0, **mixer_kwargs
):
"""
"position_ids" is just to be compatible with Transformer generation. We don't use it.
num_last_tokens: if > 0, only return the logits for the last n tokens.
"""
hidden_states = self.backbone(input_ids, inference_params=inference_params, **mixer_kwargs)
if num_last_tokens > 0:
hidden_states = hidden_states[:, -num_last_tokens:]
lm_logits = self.lm_head(hidden_states)
return CausalLMOutput(logits=lm_logits)
def generate(self, *args, **kwargs):
"""
Calls the custom `generate` method from `mamba_ssm.utils.generation.GenerationMixin`.
Refer to that method for argument names and defaults.
"""
return MambaGenerationMixin.generate(self, *args, **kwargs)
|