File size: 16,614 Bytes
85a0876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from flash_attn import flash_attn_with_kvcache
from mamba_ssm.models.mixer_seq_simple import _init_weights
from mamba_ssm.modules.mamba2 import Mamba2
from mamba_ssm.modules.mha import _update_kv_cache
from mamba_ssm.utils.generation import GenerationMixin as MambaGenerationMixin
from transformers.modeling_outputs import CausalLMOutput
from transformers.modeling_utils import PreTrainedModel

from .configuration_rene import ReneConfig


class ReneMLP(nn.Module):
    """One-hidden-layer network with GELU activation.

    Args:
      d_input: Block input dimension.
      d_output: Block output dimension.
      expand: Block expansion factor.
      bias: Use biases in linear layers.
    """

    def __init__(self, d_input, d_output=None, expand=3, bias=True, device=None, dtype=None):
        super().__init__()
        factory_kwargs = {"device": device, "dtype": dtype}
        self.d_input = d_input
        self.d_output = d_input if d_output is None else d_output
        self.d_inner = int(round(expand * d_input))
        self.in_proj = nn.Linear(self.d_input, self.d_inner, bias=bias, **factory_kwargs)
        self.activation = nn.GELU()
        self.out_proj = nn.Linear(self.d_inner, self.d_input, bias=bias, **factory_kwargs)

    def forward(self, x, inference_params=None):
        """Forward pass through the MLP module."""
        y = self.in_proj(x)
        y = self.activation(y)
        y = self.out_proj(y)
        return y

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        """Allocate inference cache for ReneMLP. (There is nothing to cache for this module)."""
        return None


class ReneMHA(nn.Module):
    """Multi-head self-attention. Adapted from mamba_ssm MHA class."""

    def __init__(
        self,
        embed_dim,
        num_heads,
        num_heads_kv=None,
        head_dim=None,  # If None, use embed_dim // num_heads
        qkv_proj_bias=True,
        out_proj_bias=True,
        softmax_scale=None,
        causal=True,
        sliding_window_length=None,  # If None, infinite context
        layer_idx=None,
        device=None,
        dtype=None,
    ) -> None:
        """
        num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
        return_residual: whether to return the input x along with the output. This is for
            performance reason: for post-norm architecture, returning the input allows us
            to fuse the backward of nn.Linear with the residual connection.
        """
        super().__init__()
        factory_kwargs = {"device": device, "dtype": dtype}
        self.embed_dim = embed_dim
        self.layer_idx = layer_idx
        self.softmax_scale = softmax_scale
        self.causal = causal
        assert self.causal, "Rene does not yet support non-causal modeling"

        self.num_heads = num_heads
        self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
        assert (
            self.num_heads % self.num_heads_kv == 0
        ), "num_heads must be divisible by num_heads_kv"
        if head_dim is None:
            assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
        self.head_dim = head_dim if head_dim is not None else self.embed_dim // num_heads
        qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
        out_dim = self.head_dim * self.num_heads

        self.sliding_window_length = sliding_window_length
        if self.sliding_window_length is None:
            self.window_size = (-1, -1)
        else:
            self.window_size = (self.sliding_window_length - 1, 0)  # for flash_attn

        self.in_proj = nn.Linear(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
        self.out_proj = nn.Linear(out_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
        """Allocate inference cache for the multi-head self-attention module."""
        dtype = self.out_proj.weight.dtype if dtype is None else dtype
        device = self.out_proj.weight.device
        kv_cache = torch.empty(
            batch_size,
            max_seqlen,
            2,
            self.num_heads_kv,
            self.head_dim,
            dtype=dtype,
            device=device,
        )
        return kv_cache, None

    def _pytorch_attn(self, q, kv):
        k, v = kv.unbind(dim=-3)
        k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv)
        v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
        L, S = q.size(-2), k.size(-2)
        if S > self.sliding_window_length:
            attn_mask = (
                torch.ones(L, S, dtype=torch.bool)
                .tril(diagonal=0)
                .triu(-self.window_size[0])
                .to(device=q.device)
            )
            # Since we pass in an attn_mask explicitly, we need to pass is_causal=False to
            # `scaled_dot_product_attention` (even though the attn_mask itself is in fact causal).
            is_causal_arg = False
        else:
            # The previous branch would also handle this case correctly, but it is more efficient
            # to omit the attn_mask when we don't need it.
            attn_mask = None
            is_causal_arg = True
        return F.scaled_dot_product_attention(
            q, k, v, attn_mask=attn_mask, is_causal=is_causal_arg, scale=self.softmax_scale
        ).transpose(1, 2)

    def _update_kv_cache(self, kv, inference_params):
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)."""
        assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
        return _update_kv_cache(kv, inference_params, self.layer_idx)

    def _update_kvcache_attention(self, q, kv, inference_params):
        """Write kv to inference_params, then compute attention."""
        if inference_params.seqlen_offset == 0 or flash_attn_with_kvcache is None:
            # TODO: this only uses seqlen_offset and not lengths_per_sample.
            kv = self._update_kv_cache(kv, inference_params)
            return self._pytorch_attn(q, kv)
        else:
            batch = q.shape[0]
            kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
            kv_cache = kv_cache[:batch]
            cache_seqlens = (
                inference_params.lengths_per_sample[:batch]
                if inference_params.lengths_per_sample is not None
                else inference_params.seqlen_offset
            )
            return flash_attn_with_kvcache(
                q,
                kv_cache[:, :, 0],
                kv_cache[:, :, 1],
                kv[:, :, 0],
                kv[:, :, 1],
                cache_seqlens=cache_seqlens,
                softmax_scale=self.softmax_scale,
                causal=self.causal,
                window_size=self.window_size,
            )

    def forward(self, x, inference_params=None):
        """Forward pass through the multi-head self-attention module."""
        if (
            inference_params is not None
            and self.layer_idx not in inference_params.key_value_memory_dict
        ):
            inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache(
                x.shape[0], inference_params.max_seqlen, dtype=x.dtype
            )
        qkv = self.in_proj(x)
        q, kv = qkv.split(
            [self.num_heads * self.head_dim, self.num_heads_kv * 2 * self.head_dim], dim=-1
        )
        q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
        kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
        if inference_params is None:
            context = self._pytorch_attn(q, kv)
        else:
            context = self._update_kvcache_attention(q, kv, inference_params)
        context = rearrange(context, "... h d -> ... (h d)")
        out = self.out_proj(context)
        return out


class Block(nn.Module):
    """Simple residual block with normalization that wraps an inner "mixer" module."""

    def __init__(self, dim, mixer_cls, norm_cls=nn.LayerNorm, residual_in_fp32=False):
        """
        dim: The dimension of the input data.
        mixer_cls: The class of the mixer module.
        norm_cls: The class of the normalization module.
        residual_in_fp32: Whether to keep residuals in fp32.
        """
        super().__init__()
        self.residual_in_fp32 = residual_in_fp32
        self.norm = norm_cls(dim)
        self.mixer = mixer_cls(dim)

    def forward(self, x, inference_params=None, **mixer_kwargs):
        """Forward pass through the block."""
        y = self.norm(x.to(dtype=self.norm.weight.dtype))
        y = self.mixer(y, inference_params=inference_params, **mixer_kwargs)

        residual = x
        if self.residual_in_fp32:
            residual = residual.to(torch.float32)
        y = y + residual
        y = y.to(dtype=x.dtype)

        return y

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        """Allocate inference cache for the mixer module."""
        return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)


def _create_block(
    d_model,
    norm_cls,
    ssm_cfg=None,
    attn_layer_idx=None,
    attn_cfg=None,
    mlp_layer_idx=None,
    mlp_cfg=None,
    residual_in_fp32=False,
    layer_idx=None,
    device=None,
    dtype=None,
):
    factory_kwargs = {"device": device, "dtype": dtype}
    if ssm_cfg is None:
        ssm_cfg = {}
    if attn_layer_idx is None:
        attn_layer_idx = []
    if attn_cfg is None:
        attn_cfg = {}
    if mlp_layer_idx is None:
        mlp_layer_idx = []
    if mlp_cfg is None:
        mlp_cfg = {}
    if layer_idx in attn_layer_idx:
        mixer_cls = partial(ReneMHA, layer_idx=layer_idx, **attn_cfg, **factory_kwargs)
    elif layer_idx in mlp_layer_idx:
        mixer_cls = partial(ReneMLP, **mlp_cfg, **factory_kwargs)
    else:
        mixer_cls = partial(Mamba2, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
    return Block(d_model, mixer_cls, norm_cls=norm_cls, residual_in_fp32=residual_in_fp32)


class MixerModel(nn.Module):
    """Adapted from mamba_ssm.models.mixer_seq_simple.MixerModel."""

    def __init__(
        self,
        d_model: int,
        n_layer: int,
        vocab_size: int,
        ssm_cfg=None,
        attn_layer_idx=None,
        attn_cfg=None,
        mlp_layer_idx=None,
        mlp_cfg=None,
        norm_epsilon: float = 1e-5,
        rms_norm: bool = False,
        initializer_cfg=None,
        residual_in_fp32=False,
        device=None,
        dtype=None,
    ) -> None:
        super().__init__()
        factory_kwargs = {"device": device, "dtype": dtype}
        self.residual_in_fp32 = residual_in_fp32

        if rms_norm:
            from mamba_ssm.ops.triton.layer_norm import RMSNorm as norm_cls_base
        else:
            norm_cls_base = nn.LayerNorm
        norm_cls = partial(norm_cls_base, eps=norm_epsilon, **factory_kwargs)

        self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)

        self.layers = nn.ModuleList(
            [
                _create_block(
                    d_model,
                    norm_cls=norm_cls,
                    ssm_cfg=ssm_cfg,
                    attn_layer_idx=attn_layer_idx,
                    attn_cfg=attn_cfg,
                    mlp_layer_idx=mlp_layer_idx,
                    mlp_cfg=mlp_cfg,
                    residual_in_fp32=residual_in_fp32,
                    layer_idx=i,
                    **factory_kwargs,
                )
                for i in range(n_layer)
            ]
        )

        self.norm_f = norm_cls(d_model)

        self.apply(
            partial(
                _init_weights,
                n_layer=n_layer,
                **(initializer_cfg if initializer_cfg is not None else {}),
                n_residuals_per_layer=1,
            )
        )

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        """Allocate inference cache for all layers."""
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for i, layer in enumerate(self.layers)
        }

    def forward(self, input_ids, inference_params=None, **mixer_kwargs):
        """Forward pass through the model."""
        hidden_states = self.embedding(input_ids)
        for layer in self.layers:
            hidden_states = layer(hidden_states, inference_params=inference_params, **mixer_kwargs)
        hidden_states = self.norm_f(hidden_states.to(dtype=self.norm_f.weight.dtype))
        return hidden_states


class ReneLMHeadModel(PreTrainedModel, MambaGenerationMixin):
    """
    Rene language model architecture.
    Based on mamba_ssm.models.mixer_seq_simple.MambaLMHeadModel, with several adaptations.
    """

    config_class = ReneConfig
    base_model_prefix = "backbone"
    _no_split_modules = ["Block", "Mamba2"]
    supports_gradient_checkpointing = True
    _is_stateful = True
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(
        self,
        config: ReneConfig,
        initializer_cfg=None,
        device=None,
        dtype=None,
    ) -> None:
        super().__init__(config)
        d_model = config.d_model
        n_layer = config.n_layer
        vocab_size = config.vocab_size
        ssm_cfg = config.ssm_cfg
        attn_layer_idx = config.attn_layer_idx
        attn_cfg = config.attn_cfg
        mlp_layer_idx = config.mlp_layer_idx
        mlp_cfg = config.mlp_cfg
        rms_norm = config.rms_norm
        residual_in_fp32 = config.residual_in_fp32
        pad_vocab_size_multiple = config.pad_vocab_size_multiple
        factory_kwargs = {"device": device, "dtype": dtype}

        if set(attn_layer_idx).intersection(mlp_layer_idx):
            raise ValueError(f"Conflicting {attn_layer_idx=} and {mlp_layer_idx=}")

        if vocab_size % pad_vocab_size_multiple != 0:
            vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)

        self.backbone = MixerModel(
            d_model=d_model,
            n_layer=n_layer,
            vocab_size=vocab_size,
            ssm_cfg=ssm_cfg,
            attn_layer_idx=attn_layer_idx,
            attn_cfg=attn_cfg,
            mlp_layer_idx=mlp_layer_idx,
            mlp_cfg=mlp_cfg,
            rms_norm=rms_norm,
            initializer_cfg=initializer_cfg,
            residual_in_fp32=residual_in_fp32,
            **factory_kwargs,
        )
        self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs)

        # Initialize weights
        self.apply(
            partial(
                _init_weights,
                n_layer=n_layer,
                **(initializer_cfg if initializer_cfg is not None else {}),
            )
        )
        self.tie_weights()

    def tie_weights(self):
        """Tie embeddings and softmax layer weights if specified by config."""
        if self.config.tie_word_embeddings:
            self.lm_head.weight = self.backbone.embedding.weight

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        """Allocate inference cache."""
        return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)

    def forward(
        self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0, **mixer_kwargs
    ):
        """
        "position_ids" is just to be compatible with Transformer generation. We don't use it.
        num_last_tokens: if > 0, only return the logits for the last n tokens.
        """
        hidden_states = self.backbone(input_ids, inference_params=inference_params, **mixer_kwargs)
        if num_last_tokens > 0:
            hidden_states = hidden_states[:, -num_last_tokens:]
        lm_logits = self.lm_head(hidden_states)

        return CausalLMOutput(logits=lm_logits)

    def generate(self, *args, **kwargs):
        """
        Calls the custom `generate` method from `mamba_ssm.utils.generation.GenerationMixin`.
        Refer to that method for argument names and defaults.
        """
        return MambaGenerationMixin.generate(self, *args, **kwargs)