--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fedcsis-slot_baseline-xlm_r-es results: [] datasets: - cartesinus/leyzer-fedcsis language: - es --- # fedcsis-slot_baseline-xlm_r-es This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset. Result on test set: - Precision: 0.9696 - Recall: 0.9686 - F1: 0.9691 - Accuracy: 0.9904 It achieves the following results on the evaluation set: - Loss: 0.0521 - Precision: 0.9728 - Recall: 0.9711 - F1: 0.9720 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7183 | 1.0 | 941 | 0.1287 | 0.9389 | 0.9429 | 0.9409 | 0.9802 | | 0.0792 | 2.0 | 1882 | 0.0698 | 0.9551 | 0.9609 | 0.9580 | 0.9876 | | 0.0502 | 3.0 | 2823 | 0.0586 | 0.9623 | 0.9624 | 0.9624 | 0.9886 | | 0.0312 | 4.0 | 3764 | 0.0511 | 0.9697 | 0.9668 | 0.9682 | 0.9904 | | 0.0229 | 5.0 | 4705 | 0.0494 | 0.9715 | 0.9687 | 0.9701 | 0.9913 | | 0.021 | 6.0 | 5646 | 0.0447 | 0.9697 | 0.9680 | 0.9689 | 0.9911 | | 0.0139 | 7.0 | 6587 | 0.0512 | 0.9715 | 0.9691 | 0.9703 | 0.9915 | | 0.0126 | 8.0 | 7528 | 0.0507 | 0.9713 | 0.9699 | 0.9706 | 0.9913 | | 0.01 | 9.0 | 8469 | 0.0500 | 0.9720 | 0.9702 | 0.9711 | 0.9913 | | 0.0072 | 10.0 | 9410 | 0.0521 | 0.9728 | 0.9711 | 0.9720 | 0.9914 | ### Per slot evaluation on test set | slot_name | precision | recall | f1 | tc_size | |-----------|-----------|--------|----|---------| | album | 0.9500 | 0.9135 | 0.9314 | 104 | | all_lang | 0.7500 | 1.0000 | 0.8571 | 3 | | artist | 0.9556 | 0.9685 | 0.9620 | 222 | | av_alias | 1.0000 | 1.0000 | 1.0000 | 18 | | caption | 0.9565 | 0.9362 | 0.9462 | 47 | | category | 0.9091 | 1.0000 | 0.9524 | 10 | | channel | 0.7857 | 0.7857 | 0.7857 | 14 | | channel_id | 0.9500 | 1.0000 | 0.9744 | 19 | | count | 1.0000 | 1.0000 | 1.0000 | 8 | | date | 0.9762 | 0.9762 | 0.9762 | 42 | | date_day | 1.0000 | 1.0000 | 1.0000 | 6 | | date_month | 1.0000 | 1.0000 | 1.0000 | 7 | | device_name | 0.9770 | 1.0000 | 0.9884 | 85 | | email | 1.0000 | 0.9740 | 0.9868 | 192 | | event_name | 1.0000 | 1.0000 | 1.0000 | 35 | | file_name | 1.0000 | 1.0000 | 1.0000 | 10 | | file_size | 1.0000 | 1.0000 | 1.0000 | 2 | | filter | 1.0000 | 1.0000 | 1.0000 | 15 | | hashtag | 1.0000 | 0.9565 | 0.9778 | 46 | | img_query | 0.9843 | 0.9843 | 0.9843 | 764 | | label | 1.0000 | 1.0000 | 1.0000 | 7 | | location | 0.9753 | 0.9875 | 0.9814 | 80 | | mail | 1.0000 | 1.0000 | 1.0000 | 5 | | message | 0.9577 | 0.9607 | 0.9592 | 636 | | mime_type | 1.0000 | 1.0000 | 1.0000 | 1 | | name | 0.9677 | 0.9677 | 0.9677 | 31 | | percent | 0.8571 | 1.0000 | 0.9231 | 6 | | phone_number | 0.9429 | 0.9763 | 0.9593 | 169 | | phone_type | 1.0000 | 0.6667 | 0.8000 | 3 | | picture_url | 1.0000 | 0.9286 | 0.9630 | 42 | | playlist | 0.9701 | 0.9630 | 0.9665 | 135 | | portal | 1.0000 | 0.9940 | 0.9970 | 168 | | priority | 1.0000 | 1.0000 | 1.0000 | 3 | | purpose | 0.0000 | 0.0000 | 0.0000 | 1 | | query | 0.9259 | 0.8929 | 0.9091 | 28 | | rating | 1.0000 | 1.0000 | 1.0000 | 3 | | review_count | 0.7500 | 0.7500 | 0.7500 | 4 | | section | 1.0000 | 1.0000 | 1.0000 | 134 | | seek_time | 1.0000 | 1.0000 | 1.0000 | 2 | | sender | 0.0000 | 0.0000 | 0.0000 | 1 | | sender_address | 1.0000 | 1.0000 | 1.0000 | 6 | | song | 0.9314 | 0.9628 | 0.9468 | 296 | | src_lang | 0.9872 | 1.0000 | 0.9935 | 77 | | status | 0.8462 | 0.9565 | 0.8980 | 23 | | subject | 0.9555 | 0.9567 | 0.9561 | 785 | | text | 0.9798 | 0.9798 | 0.9798 | 99 | | time | 1.0000 | 1.0000 | 1.0000 | 32 | | to | 0.9760 | 0.9651 | 0.9705 | 802 | | topic | 1.0000 | 1.0000 | 1.0000 | 1 | | translator | 1.0000 | 1.0000 | 1.0000 | 52 | | trg_lang | 0.9886 | 1.0000 | 0.9943 | 87 | | txt_query | 1.0000 | 0.8947 | 0.9444 | 19 | | username | 1.0000 | 1.0000 | 1.0000 | 6 | | value | 0.9318 | 0.9535 | 0.9425 | 43 | | weight | 1.0000 | 1.0000 | 1.0000 | 1 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2