cartesinus commited on
Commit
6765ef4
·
1 Parent(s): 1a7b96f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: fedcsis-slot_baseline-xlm_r-pl
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # fedcsis-slot_baseline-xlm_r-pl
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1009
23
+ - Precision: 0.9579
24
+ - Recall: 0.9512
25
+ - F1: 0.9546
26
+ - Accuracy: 0.9860
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.1608 | 1.0 | 798 | 0.2575 | 0.8881 | 0.8916 | 0.8898 | 0.9532 |
58
+ | 0.1561 | 2.0 | 1596 | 0.1188 | 0.9459 | 0.9389 | 0.9424 | 0.9806 |
59
+ | 0.0979 | 3.0 | 2394 | 0.1060 | 0.9507 | 0.9486 | 0.9497 | 0.9838 |
60
+ | 0.0579 | 4.0 | 3192 | 0.0916 | 0.9573 | 0.9475 | 0.9524 | 0.9851 |
61
+ | 0.0507 | 5.0 | 3990 | 0.1109 | 0.9527 | 0.9506 | 0.9516 | 0.9839 |
62
+ | 0.0344 | 6.0 | 4788 | 0.0987 | 0.9575 | 0.9488 | 0.9531 | 0.9855 |
63
+ | 0.0266 | 7.0 | 5586 | 0.1010 | 0.9584 | 0.9501 | 0.9542 | 0.9854 |
64
+ | 0.0211 | 8.0 | 6384 | 0.1051 | 0.9575 | 0.9498 | 0.9536 | 0.9855 |
65
+ | 0.0168 | 9.0 | 7182 | 0.1009 | 0.9577 | 0.9516 | 0.9546 | 0.9861 |
66
+ | 0.016 | 10.0 | 7980 | 0.1009 | 0.9579 | 0.9512 | 0.9546 | 0.9860 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.27.4
72
+ - Pytorch 1.13.1+cu116
73
+ - Datasets 2.11.0
74
+ - Tokenizers 0.13.2