--- language: - pl license: mit tags: - generated_from_trainer datasets: - cartesinus/leyzer-fedcsis metrics: - precision - recall - f1 - accuracy base_model: xlm-roberta-base model-index: - name: fedcsis-slot_baseline-xlm_r-pl results: [] --- # fedcsis-slot_baseline-xlm_r-pl This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset. Results on test set: - Precision: 0.9621 - Recall: 0.9583 - F1: 0.9602 - Accuracy: 0.9857 It achieves the following results on the evaluation set: - Loss: 0.1009 - Precision: 0.9579 - Recall: 0.9512 - F1: 0.9546 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.1608 | 1.0 | 798 | 0.2575 | 0.8881 | 0.8916 | 0.8898 | 0.9532 | | 0.1561 | 2.0 | 1596 | 0.1188 | 0.9459 | 0.9389 | 0.9424 | 0.9806 | | 0.0979 | 3.0 | 2394 | 0.1060 | 0.9507 | 0.9486 | 0.9497 | 0.9838 | | 0.0579 | 4.0 | 3192 | 0.0916 | 0.9573 | 0.9475 | 0.9524 | 0.9851 | | 0.0507 | 5.0 | 3990 | 0.1109 | 0.9527 | 0.9506 | 0.9516 | 0.9839 | | 0.0344 | 6.0 | 4788 | 0.0987 | 0.9575 | 0.9488 | 0.9531 | 0.9855 | | 0.0266 | 7.0 | 5586 | 0.1010 | 0.9584 | 0.9501 | 0.9542 | 0.9854 | | 0.0211 | 8.0 | 6384 | 0.1051 | 0.9575 | 0.9498 | 0.9536 | 0.9855 | | 0.0168 | 9.0 | 7182 | 0.1009 | 0.9577 | 0.9516 | 0.9546 | 0.9861 | | 0.016 | 10.0 | 7980 | 0.1009 | 0.9579 | 0.9512 | 0.9546 | 0.9860 | ### Per slot evaluation | slot_name | precision | recall | f1 | tc_size | |-----------|-----------|--------|----|---------| | album | 0.2000 | 0.3333 | 0.2500 | 9 | | all_lang | 1.0000 | 1.0000 | 1.0000 | 5 | | artist | 0.9341 | 0.9444 | 0.9392 | 90 | | av_alias | 0.6667 | 0.8000 | 0.7273 | 5 | | caption | 0.9651 | 0.9432 | 0.9540 | 88 | | category | 0.0000 | 0.0000 | 0.0000 | 1 | | category_a | 1.0000 | 0.9167 | 0.9565 | 12 | | category_b | 1.0000 | 1.0000 | 1.0000 | 25 | | channel | 0.9492 | 0.9333 | 0.9412 | 60 | | channel_id | 0.9701 | 0.9644 | 0.9673 | 337 | | count | 1.0000 | 0.9167 | 0.9565 | 12 | | date | 0.9764 | 0.9841 | 0.9802 | 126 | | date_day | 1.0000 | 0.9500 | 0.9744 | 20 | | date_month | 0.9677 | 1.0000 | 0.9836 | 30 | | device_name | 0.9091 | 1.0000 | 0.9524 | 10 | | email | 1.0000 | 0.9913 | 0.9956 | 115 | | event_name | 0.8788 | 0.9355 | 0.9063 | 31 | | file_name | 0.9778 | 0.9778 | 0.9778 | 45 | | file_size | 1.0000 | 1.0000 | 1.0000 | 12 | | filename | 0.9722 | 0.9589 | 0.9655 | 73 | | filter | 1.0000 | 1.0000 | 1.0000 | 35 | | from | 0.9811 | 0.9123 | 0.9455 | 57 | | hashtag | 1.0000 | 1.0000 | 1.0000 | 28 | | img_query | 0.9707 | 0.9678 | 0.9693 | 342 | | label | 1.0000 | 1.0000 | 1.0000 | 5 | | location | 0.9766 | 0.9728 | 0.9747 | 257 | | mail | 1.0000 | 1.0000 | 1.0000 | 3 | | message | 0.9250 | 0.9487 | 0.9367 | 117 | | mime_type | 0.9375 | 1.0000 | 0.9677 | 15 | | name | 0.9412 | 0.9796 | 0.9600 | 49 | | pathname | 0.8889 | 0.8889 | 0.8889 | 18 | | percent | 1.0000 | 1.0000 | 1.0000 | 3 | | phone_number | 0.9774 | 0.9774 | 0.9774 | 177 | | phone_type | 1.0000 | 1.0000 | 1.0000 | 21 | | picture_url | 0.9846 | 0.9412 | 0.9624 | 68 | | playlist | 0.9516 | 0.9672 | 0.9593 | 122 | | portal | 0.9869 | 0.9869 | 0.9869 | 153 | | priority | 0.7500 | 1.0000 | 0.8571 | 6 | | purpose | 0.0000 | 0.0000 | 0.0000 | 5 | | query | 0.9663 | 0.9690 | 0.9677 | 355 | | rating | 0.9630 | 0.9286 | 0.9455 | 28 | | review_count | 1.0000 | 1.0000 | 1.0000 | 20 | | section | 0.9730 | 0.9730 | 0.9730 | 74 | | seek_time | 1.0000 | 1.0000 | 1.0000 | 3 | | sender | 1.0000 | 1.0000 | 1.0000 | 6 | | sender_address | 1.0000 | 0.9444 | 0.9714 | 18 | | song | 0.8824 | 0.8898 | 0.8861 | 118 | | src_lang_de | 0.9880 | 0.9762 | 0.9820 | 84 | | src_lang_en | 0.9455 | 0.9630 | 0.9541 | 54 | | src_lang_es | 0.9853 | 0.9306 | 0.9571 | 72 | | src_lang_fr | 0.9733 | 0.9733 | 0.9733 | 75 | | src_lang_it | 0.9872 | 0.9506 | 0.9686 | 81 | | src_lang_pl | 0.9818 | 1.0000 | 0.9908 | 54 | | status | 0.8810 | 0.9487 | 0.9136 | 39 | | subject | 0.9636 | 0.9725 | 0.9680 | 109 | | text_de | 0.9762 | 0.9762 | 0.9762 | 84 | | text_en | 0.9796 | 0.9697 | 0.9746 | 99 | | text_es | 0.8734 | 0.9583 | 0.9139 | 72 | | text_fr | 0.9733 | 0.9733 | 0.9733 | 75 | | text_it | 0.9872 | 0.9506 | 0.9686 | 81 | | text_multi | 0.0000 | 0.0000 | 0.0000 | 4 | | text_pl | 0.9310 | 1.0000 | 0.9643 | 54 | | time | 0.9063 | 0.8788 | 0.8923 | 33 | | to | 0.9648 | 0.9648 | 0.9648 | 199 | | topic | 0.0000 | 0.0000 | 0.0000 | 3 | | translator | 0.9838 | 0.9838 | 0.9838 | 185 | | trg_lang_de | 0.9474 | 0.9730 | 0.9600 | 37 | | trg_lang_en | 1.0000 | 0.9565 | 0.9778 | 46 | | trg_lang_es | 0.9792 | 0.9792 | 0.9792 | 48 | | trg_lang_fr | 0.9808 | 1.0000 | 0.9903 | 51 | | trg_lang_general | 0.9500 | 0.9500 | 0.9500 | 20 | | trg_lang_it | 0.9825 | 0.9492 | 0.9655 | 59 | | trg_lang_pl | 0.9302 | 0.9756 | 0.9524 | 41 | | txt_query | 0.9375 | 0.9146 | 0.9259 | 82 | | username | 0.9615 | 0.8929 | 0.9259 | 28 | | value | 0.8750 | 0.8750 | 0.8750 | 8 | | weight | 1.0000 | 1.0000 | 1.0000 | 3 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2