cartesinus
commited on
Commit
•
3b7b191
1
Parent(s):
6f979e2
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: multilingual_minilm-amazon-massive-intent
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# multilingual_minilm-amazon-massive-intent
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.8941
|
21 |
+
- Accuracy: 0.8234
|
22 |
+
- F1: 0.8234
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 15
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
53 |
+
| 3.7961 | 1.0 | 720 | 3.1657 | 0.3404 | 0.3404 |
|
54 |
+
| 3.1859 | 2.0 | 1440 | 2.4835 | 0.4343 | 0.4343 |
|
55 |
+
| 2.3104 | 3.0 | 2160 | 2.0474 | 0.5652 | 0.5652 |
|
56 |
+
| 2.0071 | 4.0 | 2880 | 1.7190 | 0.6503 | 0.6503 |
|
57 |
+
| 1.5595 | 5.0 | 3600 | 1.4873 | 0.6990 | 0.6990 |
|
58 |
+
| 1.3664 | 6.0 | 4320 | 1.3088 | 0.7354 | 0.7354 |
|
59 |
+
| 1.1272 | 7.0 | 5040 | 1.1964 | 0.7521 | 0.7521 |
|
60 |
+
| 1.0128 | 8.0 | 5760 | 1.1115 | 0.7718 | 0.7718 |
|
61 |
+
| 0.9405 | 9.0 | 6480 | 1.0598 | 0.7841 | 0.7841 |
|
62 |
+
| 0.7758 | 10.0 | 7200 | 1.0003 | 0.7944 | 0.7944 |
|
63 |
+
| 0.7457 | 11.0 | 7920 | 0.9599 | 0.8037 | 0.8037 |
|
64 |
+
| 0.6605 | 12.0 | 8640 | 0.9175 | 0.8165 | 0.8165 |
|
65 |
+
| 0.6135 | 13.0 | 9360 | 0.9148 | 0.8190 | 0.8190 |
|
66 |
+
| 0.5698 | 14.0 | 10080 | 0.8976 | 0.8229 | 0.8229 |
|
67 |
+
| 0.5578 | 15.0 | 10800 | 0.8941 | 0.8234 | 0.8234 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.25.1
|
73 |
+
- Pytorch 1.13.0+cu116
|
74 |
+
- Datasets 2.7.1
|
75 |
+
- Tokenizers 0.13.2
|