|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, hidden_size): |
|
super(Attention, self).__init__() |
|
self.W1 = nn.Linear(hidden_size, hidden_size) |
|
self.W2 = nn.Linear(hidden_size, hidden_size) |
|
self.v = nn.Linear(hidden_size, 1, bias=False) |
|
|
|
def forward(self, hidden, encoder_outputs): |
|
sequence_len = encoder_outputs.shape[1] |
|
hidden = hidden.unsqueeze(1).repeat(1, sequence_len, 1) |
|
|
|
energy = torch.tanh(self.W1(encoder_outputs) + self.W2(hidden)) |
|
attention = self.v(energy).squeeze(2) |
|
attention_weights = torch.softmax(attention, dim=1) |
|
|
|
context = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs).squeeze(1) |
|
return context, attention_weights |
|
|
|
class SimpleRecurrentNetworkWithAttention(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size, cell_type='RNN', device='cpu'): |
|
super(SimpleRecurrentNetworkWithAttention, self).__init__() |
|
|
|
self.device = device |
|
self.embedding = nn.Embedding(input_size, hidden_size) |
|
self.attention = Attention(hidden_size * 2) |
|
|
|
if cell_type == 'LSTM': |
|
self.rnn = nn.LSTM(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
elif cell_type == 'GRU': |
|
self.rnn = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
else: |
|
self.rnn = nn.RNN(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
|
|
self.fc = nn.Linear(hidden_size * 2, output_size) |
|
|
|
def forward(self, inputs): |
|
embedded = self.embedding(inputs.to(self.device)) |
|
rnn_output, hidden = self.rnn(embedded) |
|
|
|
if isinstance(hidden, tuple): |
|
hidden = hidden[0] |
|
|
|
hidden = torch.cat((hidden[-2], hidden[-1]), dim=1) |
|
context, attention_weights = self.attention(hidden, rnn_output) |
|
output = self.fc(context) |
|
|
|
return output, attention_weights |
|
|