ronak commited on
Commit
10b62a7
1 Parent(s): e61d1e2

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ license: mit
5
+ language:
6
+ - en
7
+ base_model: mistralai/Mistral-7B-v0.1
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ <img src="https://huggingface.co/castorini/rank_zephyr_7b_v1_full/resolve/main/thumbnail.jpeg" alt="RankZephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
14
+ <!-- <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> -->
15
+
16
+
17
+ # Model Card for RankZephyr 7B V1 - Full
18
+
19
+ RankZephyr is a series of language models that are trained to act as helpful reranking assistants built on the Zephyr-7B-β model.
20
+ RankZephyr Base is the model that follows single stage fine-tuning on the RankGPT-3.5 model, while RankZephyr Full is the model that is further fine-tuned on RankGPT-4 reorderings of OpenAI's Ada2 orderings for 5K queries.
21
+
22
+
23
+ ## Model description
24
+
25
+ - **Model type:** A 7B parameter GPT-like model initially fine-tuned on a mix of publicly available, synthetic datasets, followed by task-specific listwise reranking data.
26
+ - **Language(s) (NLP):** Primarily English
27
+ - **License:** MIT
28
+ - **Fine-tuned from model:** [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
29
+
30
+ ### Model Sources
31
+
32
+ <!-- Provide the basic links for the model. -->
33
+
34
+ - **Repository:** https://github.com/castorini/rank_llm
35
+ - **Paper:** https://arxiv.org/abs/2312.02724
36
+
37
+ ## Effectiveness
38
+
39
+ At the time of release, RankZephyr-7B-Full is the state-of-the-art open-source reranking model on various datasets like DL19/20/21/22 and TREC-COVID and TREC-News.
40
+
41
+ With the MS MARCO v1 collection:
42
+
43
+ | Model | Size | First Stage | DL19 | DL20|
44
+ |-------------|-----|----|---------------|--------------|
45
+ | **RankZephyr-7b-v1-full-rho** 🪁 | **7B** | **SPLADE++ ED** | **0.7855** | **0.8255** |
46
+ | **RankZephyr-7b-v1-full** 🪁 | **7B** | **SPLADE++ ED** | **0.7803** | **0.8211** |
47
+ | RankGPT-4 (PSC) | -| SPLADE++ ED | 0.7601 | 0.7514 |
48
+ | RankGPT-4 | -| SPLADE++ ED | 0.7464 | 0.7076 |
49
+ | **RankZephyr-7b-v1-base** 🪁 | **7B** | **SPLADE++ ED** | **0.7341** | **0.7213** |
50
+ | RankGPT-3.5 | -| SPLADE++ ED | 0.7504 | 0.7120|
51
+
52
+
53
+
54
+
55
+ ## Intended uses & limitationspacka
56
+
57
+ The following is an excerpt from the [Zephyr-7B-β model card](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md#intended-use--limitations):
58
+
59
+ In our case, RankZephyr is fine-tuned to act as a listwise reranking agent. You provide it with a query and documents and get back a reordered list of document identifiers.
60
+
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ The following is an excerpt from the [Zephyr-7B-β model card](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md#bias-risks--limitations):
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+
69
+ > Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
70
+
71
+ Our model is trained specifically on monolingual English data, effectiveness on multilingual sets is not guaranteed.
72
+
73
+
74
+ ## Citation
75
+
76
+ If you find RankZephyr is useful in your work, please cite the following paper:
77
+
78
+ ```
79
+ @ARTICLE{pradeep2023rankzephyr,
80
+ title = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
81
+ author = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
82
+ year = {2023},
83
+ journal = {arXiv:2312.02724}
84
+ }
85
+ ```
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ronak/rank_zephyr_beta_7b_v1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "pad_token_id": 2,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.35.1",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.35.1"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step223
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51f4d01b1ceab474c41594fce3971b8013f2617bffd7b0ca8320e73e89389440
3
+ size 4943162336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86b81f475a57d2e6ada4ecc9cb9aba34dd89aae3fba21002118990bfc282c7a2
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddeb0770de0c2f5c50a8de1aaaa3129f81053e6c5cdc40d8d53326407f0ac666
3
+ size 4540516344
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cfe26e8773209c4a52736356b69593758e7a1b5e36be4465b48efb5e5a51773
3
+ size 21687
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ee9adde6682baf8f69b22d0ec81ad755a7ae14714c23d8aad6ab0b84139b285
3
+ size 21687
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b65dbbb6d1107192e5ced4ff749d6e898d112d93d95cd215fda974265ec0c30a
3
+ size 21687
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f4992dbbfa3a849222c1a03bc4821813ee53688d8f87864a3fafbfe3c12df24
3
+ size 21687
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89676490a50787120a566ff9c7616c2e3d809af20654c11bc838e05661c8b8ea
3
+ size 21687
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266b5b9cee1bed8cafbd80ceaf50b26bad5af98ab19cab952b9496d6c070d10e
3
+ size 21687
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c10f43acd03d33f36112b15313710e4a48215b3c9b2180b39a56b7b3fd2de89b
3
+ size 21687
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:512b4ed7c04fb6bd8e9b4d994bc85efd88a40b37e3d13d84d8713e2f3952f6a3
3
+ size 21687
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
thumbnail.jpeg ADDED
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
37
+ "clean_up_tokenization_spaces": false,
38
+ "eos_token": "</s>",
39
+ "legacy": true,
40
+ "model_max_length": 1000000000000000019884624838656,
41
+ "pad_token": "</s>",
42
+ "sp_model_kwargs": {},
43
+ "spaces_between_special_tokens": false,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "truncation_side": "left",
46
+ "trust_remote_code": false,
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": true,
49
+ "use_fast": true
50
+ }
trainer_state.json ADDED
@@ -0,0 +1,1357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0229357798165137,
5
+ "eval_steps": 500,
6
+ "global_step": 223,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 0.6207,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 6.25e-07,
20
+ "loss": 0.4019,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.25e-06,
26
+ "loss": 0.4114,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 1.8750000000000003e-06,
32
+ "loss": 0.6422,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 2.5e-06,
38
+ "loss": 0.3463,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 3.125e-06,
44
+ "loss": 0.3494,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.03,
49
+ "learning_rate": 3.7500000000000005e-06,
50
+ "loss": 0.322,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 4.3750000000000005e-06,
56
+ "loss": 0.3168,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.04,
61
+ "learning_rate": 5e-06,
62
+ "loss": 0.3176,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.05,
67
+ "learning_rate": 4.9942129629629636e-06,
68
+ "loss": 0.3002,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.05,
73
+ "learning_rate": 4.988425925925927e-06,
74
+ "loss": 0.3029,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.06,
79
+ "learning_rate": 4.982638888888889e-06,
80
+ "loss": 0.301,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.06,
85
+ "learning_rate": 4.976851851851852e-06,
86
+ "loss": 0.2916,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.06,
91
+ "learning_rate": 4.9710648148148146e-06,
92
+ "loss": 0.2866,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "learning_rate": 4.9652777777777786e-06,
98
+ "loss": 0.2779,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.07,
103
+ "learning_rate": 4.959490740740741e-06,
104
+ "loss": 0.261,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.08,
109
+ "learning_rate": 4.953703703703704e-06,
110
+ "loss": 0.2669,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.08,
115
+ "learning_rate": 4.947916666666667e-06,
116
+ "loss": 0.2777,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.09,
121
+ "learning_rate": 4.94212962962963e-06,
122
+ "loss": 0.2544,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.09,
127
+ "learning_rate": 4.936342592592593e-06,
128
+ "loss": 0.2569,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.1,
133
+ "learning_rate": 4.930555555555556e-06,
134
+ "loss": 0.255,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.1,
139
+ "learning_rate": 4.924768518518519e-06,
140
+ "loss": 0.2494,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.11,
145
+ "learning_rate": 4.918981481481482e-06,
146
+ "loss": 0.2537,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.11,
151
+ "learning_rate": 4.9131944444444445e-06,
152
+ "loss": 0.2457,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.11,
157
+ "learning_rate": 4.907407407407408e-06,
158
+ "loss": 0.2472,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.12,
163
+ "learning_rate": 4.901620370370371e-06,
164
+ "loss": 0.2481,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.12,
169
+ "learning_rate": 4.895833333333333e-06,
170
+ "loss": 0.252,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.13,
175
+ "learning_rate": 4.890046296296297e-06,
176
+ "loss": 0.2382,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.13,
181
+ "learning_rate": 4.8842592592592595e-06,
182
+ "loss": 0.2409,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.14,
187
+ "learning_rate": 4.878472222222223e-06,
188
+ "loss": 0.2503,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.14,
193
+ "learning_rate": 4.872685185185186e-06,
194
+ "loss": 0.2448,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.15,
199
+ "learning_rate": 4.866898148148149e-06,
200
+ "loss": 0.2443,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.15,
205
+ "learning_rate": 4.861111111111111e-06,
206
+ "loss": 0.2544,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.16,
211
+ "learning_rate": 4.8553240740740745e-06,
212
+ "loss": 0.2515,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.16,
217
+ "learning_rate": 4.849537037037038e-06,
218
+ "loss": 0.2437,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.17,
223
+ "learning_rate": 4.84375e-06,
224
+ "loss": 0.2425,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.17,
229
+ "learning_rate": 4.837962962962963e-06,
230
+ "loss": 0.2434,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.17,
235
+ "learning_rate": 4.832175925925926e-06,
236
+ "loss": 0.2232,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.18,
241
+ "learning_rate": 4.8263888888888895e-06,
242
+ "loss": 0.2253,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.18,
247
+ "learning_rate": 4.820601851851852e-06,
248
+ "loss": 0.2269,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.19,
253
+ "learning_rate": 4.814814814814815e-06,
254
+ "loss": 0.2374,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.19,
259
+ "learning_rate": 4.809027777777778e-06,
260
+ "loss": 0.2224,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.2,
265
+ "learning_rate": 4.803240740740741e-06,
266
+ "loss": 0.2216,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.2,
271
+ "learning_rate": 4.797453703703704e-06,
272
+ "loss": 0.2264,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.21,
277
+ "learning_rate": 4.791666666666668e-06,
278
+ "loss": 0.2124,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.21,
283
+ "learning_rate": 4.78587962962963e-06,
284
+ "loss": 0.2206,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.22,
289
+ "learning_rate": 4.780092592592593e-06,
290
+ "loss": 0.2378,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.22,
295
+ "learning_rate": 4.774305555555556e-06,
296
+ "loss": 0.2258,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.22,
301
+ "learning_rate": 4.768518518518519e-06,
302
+ "loss": 0.2239,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.23,
307
+ "learning_rate": 4.762731481481482e-06,
308
+ "loss": 0.2225,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.23,
313
+ "learning_rate": 4.756944444444445e-06,
314
+ "loss": 0.2119,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.24,
319
+ "learning_rate": 4.751157407407408e-06,
320
+ "loss": 0.2045,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.24,
325
+ "learning_rate": 4.7453703703703705e-06,
326
+ "loss": 0.2191,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.25,
331
+ "learning_rate": 4.739583333333334e-06,
332
+ "loss": 0.2177,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.25,
337
+ "learning_rate": 4.733796296296297e-06,
338
+ "loss": 0.2188,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.26,
343
+ "learning_rate": 4.72800925925926e-06,
344
+ "loss": 0.2099,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.26,
349
+ "learning_rate": 4.722222222222222e-06,
350
+ "loss": 0.2202,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.27,
355
+ "learning_rate": 4.7164351851851854e-06,
356
+ "loss": 0.2084,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.27,
361
+ "learning_rate": 4.710648148148149e-06,
362
+ "loss": 0.1997,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.28,
367
+ "learning_rate": 4.704861111111112e-06,
368
+ "loss": 0.2251,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.28,
373
+ "learning_rate": 4.699074074074074e-06,
374
+ "loss": 0.2121,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.28,
379
+ "learning_rate": 4.693287037037037e-06,
380
+ "loss": 0.2112,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.29,
385
+ "learning_rate": 4.6875000000000004e-06,
386
+ "loss": 0.2193,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.29,
391
+ "learning_rate": 4.681712962962964e-06,
392
+ "loss": 0.2226,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.3,
397
+ "learning_rate": 4.675925925925927e-06,
398
+ "loss": 0.2129,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.3,
403
+ "learning_rate": 4.670138888888889e-06,
404
+ "loss": 0.2171,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.31,
409
+ "learning_rate": 4.664351851851852e-06,
410
+ "loss": 0.2105,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.31,
415
+ "learning_rate": 4.658564814814815e-06,
416
+ "loss": 0.2033,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.32,
421
+ "learning_rate": 4.652777777777779e-06,
422
+ "loss": 0.2063,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.32,
427
+ "learning_rate": 4.646990740740741e-06,
428
+ "loss": 0.2066,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.33,
433
+ "learning_rate": 4.641203703703704e-06,
434
+ "loss": 0.204,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.33,
439
+ "learning_rate": 4.635416666666667e-06,
440
+ "loss": 0.1921,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.33,
445
+ "learning_rate": 4.62962962962963e-06,
446
+ "loss": 0.2085,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.34,
451
+ "learning_rate": 4.623842592592593e-06,
452
+ "loss": 0.2188,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.34,
457
+ "learning_rate": 4.618055555555556e-06,
458
+ "loss": 0.2054,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.35,
463
+ "learning_rate": 4.612268518518519e-06,
464
+ "loss": 0.1993,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.35,
469
+ "learning_rate": 4.606481481481481e-06,
470
+ "loss": 0.2009,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.36,
475
+ "learning_rate": 4.6006944444444446e-06,
476
+ "loss": 0.2034,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.36,
481
+ "learning_rate": 4.594907407407408e-06,
482
+ "loss": 0.208,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.37,
487
+ "learning_rate": 4.589120370370371e-06,
488
+ "loss": 0.2008,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.37,
493
+ "learning_rate": 4.583333333333333e-06,
494
+ "loss": 0.1916,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.38,
499
+ "learning_rate": 4.577546296296297e-06,
500
+ "loss": 0.2045,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.38,
505
+ "learning_rate": 4.5717592592592595e-06,
506
+ "loss": 0.1995,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.39,
511
+ "learning_rate": 4.565972222222223e-06,
512
+ "loss": 0.1993,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.39,
517
+ "learning_rate": 4.560185185185186e-06,
518
+ "loss": 0.2049,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.39,
523
+ "learning_rate": 4.554398148148148e-06,
524
+ "loss": 0.1935,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.4,
529
+ "learning_rate": 4.548611111111111e-06,
530
+ "loss": 0.2063,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.4,
535
+ "learning_rate": 4.5428240740740745e-06,
536
+ "loss": 0.1968,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.41,
541
+ "learning_rate": 4.537037037037038e-06,
542
+ "loss": 0.1828,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.41,
547
+ "learning_rate": 4.53125e-06,
548
+ "loss": 0.2076,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.42,
553
+ "learning_rate": 4.525462962962963e-06,
554
+ "loss": 0.1774,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.42,
559
+ "learning_rate": 4.519675925925926e-06,
560
+ "loss": 0.2002,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.43,
565
+ "learning_rate": 4.5138888888888895e-06,
566
+ "loss": 0.2018,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.43,
571
+ "learning_rate": 4.508101851851852e-06,
572
+ "loss": 0.1934,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.44,
577
+ "learning_rate": 4.502314814814815e-06,
578
+ "loss": 0.2002,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.44,
583
+ "learning_rate": 4.496527777777778e-06,
584
+ "loss": 0.1852,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.44,
589
+ "learning_rate": 4.490740740740741e-06,
590
+ "loss": 0.1987,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.45,
595
+ "learning_rate": 4.484953703703704e-06,
596
+ "loss": 0.1922,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.45,
601
+ "learning_rate": 4.479166666666667e-06,
602
+ "loss": 0.1882,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.46,
607
+ "learning_rate": 4.47337962962963e-06,
608
+ "loss": 0.1899,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.46,
613
+ "learning_rate": 4.467592592592593e-06,
614
+ "loss": 0.2025,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.47,
619
+ "learning_rate": 4.461805555555556e-06,
620
+ "loss": 0.1926,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.47,
625
+ "learning_rate": 4.456018518518519e-06,
626
+ "loss": 0.1937,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.48,
631
+ "learning_rate": 4.450231481481482e-06,
632
+ "loss": 0.1798,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.48,
637
+ "learning_rate": 4.444444444444444e-06,
638
+ "loss": 0.1931,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.49,
643
+ "learning_rate": 4.438657407407408e-06,
644
+ "loss": 0.1726,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.49,
649
+ "learning_rate": 4.4328703703703705e-06,
650
+ "loss": 0.173,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.5,
655
+ "learning_rate": 4.427083333333334e-06,
656
+ "loss": 0.1924,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.5,
661
+ "learning_rate": 4.421296296296297e-06,
662
+ "loss": 0.1873,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.5,
667
+ "learning_rate": 4.41550925925926e-06,
668
+ "loss": 0.1807,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.51,
673
+ "learning_rate": 4.409722222222222e-06,
674
+ "loss": 0.1829,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.51,
679
+ "learning_rate": 4.4039351851851855e-06,
680
+ "loss": 0.1826,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.52,
685
+ "learning_rate": 4.398148148148149e-06,
686
+ "loss": 0.1747,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.52,
691
+ "learning_rate": 4.392361111111112e-06,
692
+ "loss": 0.1801,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.53,
697
+ "learning_rate": 4.386574074074074e-06,
698
+ "loss": 0.1819,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.53,
703
+ "learning_rate": 4.380787037037037e-06,
704
+ "loss": 0.1884,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.54,
709
+ "learning_rate": 4.3750000000000005e-06,
710
+ "loss": 0.1809,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.54,
715
+ "learning_rate": 4.369212962962963e-06,
716
+ "loss": 0.1799,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.55,
721
+ "learning_rate": 4.363425925925927e-06,
722
+ "loss": 0.1831,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.55,
727
+ "learning_rate": 4.357638888888889e-06,
728
+ "loss": 0.1602,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.56,
733
+ "learning_rate": 4.351851851851852e-06,
734
+ "loss": 0.1758,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.56,
739
+ "learning_rate": 4.346064814814815e-06,
740
+ "loss": 0.1883,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.56,
745
+ "learning_rate": 4.340277777777779e-06,
746
+ "loss": 0.1739,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.57,
751
+ "learning_rate": 4.334490740740741e-06,
752
+ "loss": 0.1733,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.57,
757
+ "learning_rate": 4.328703703703704e-06,
758
+ "loss": 0.1734,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.58,
763
+ "learning_rate": 4.322916666666667e-06,
764
+ "loss": 0.1892,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.58,
769
+ "learning_rate": 4.31712962962963e-06,
770
+ "loss": 0.1732,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.59,
775
+ "learning_rate": 4.311342592592593e-06,
776
+ "loss": 0.17,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.59,
781
+ "learning_rate": 4.305555555555556e-06,
782
+ "loss": 0.1841,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.6,
787
+ "learning_rate": 4.299768518518519e-06,
788
+ "loss": 0.18,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.6,
793
+ "learning_rate": 4.293981481481481e-06,
794
+ "loss": 0.167,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.61,
799
+ "learning_rate": 4.288194444444445e-06,
800
+ "loss": 0.1812,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.61,
805
+ "learning_rate": 4.282407407407408e-06,
806
+ "loss": 0.1679,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.61,
811
+ "learning_rate": 4.276620370370371e-06,
812
+ "loss": 0.1745,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.62,
817
+ "learning_rate": 4.270833333333333e-06,
818
+ "loss": 0.1857,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.62,
823
+ "learning_rate": 4.265046296296297e-06,
824
+ "loss": 0.1717,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.63,
829
+ "learning_rate": 4.2592592592592596e-06,
830
+ "loss": 0.1735,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.63,
835
+ "learning_rate": 4.253472222222223e-06,
836
+ "loss": 0.1645,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.64,
841
+ "learning_rate": 4.247685185185186e-06,
842
+ "loss": 0.1756,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.64,
847
+ "learning_rate": 4.241898148148148e-06,
848
+ "loss": 0.1712,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.65,
853
+ "learning_rate": 4.236111111111111e-06,
854
+ "loss": 0.1681,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.65,
859
+ "learning_rate": 4.2303240740740746e-06,
860
+ "loss": 0.1746,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.66,
865
+ "learning_rate": 4.224537037037038e-06,
866
+ "loss": 0.1806,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.66,
871
+ "learning_rate": 4.21875e-06,
872
+ "loss": 0.1662,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.67,
877
+ "learning_rate": 4.212962962962963e-06,
878
+ "loss": 0.1618,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.67,
883
+ "learning_rate": 4.207175925925926e-06,
884
+ "loss": 0.1752,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.67,
889
+ "learning_rate": 4.2013888888888896e-06,
890
+ "loss": 0.1681,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.68,
895
+ "learning_rate": 4.195601851851852e-06,
896
+ "loss": 0.1635,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.68,
901
+ "learning_rate": 4.189814814814815e-06,
902
+ "loss": 0.1625,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.69,
907
+ "learning_rate": 4.184027777777778e-06,
908
+ "loss": 0.1525,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.69,
913
+ "learning_rate": 4.178240740740741e-06,
914
+ "loss": 0.1608,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.7,
919
+ "learning_rate": 4.172453703703704e-06,
920
+ "loss": 0.1547,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.7,
925
+ "learning_rate": 4.166666666666667e-06,
926
+ "loss": 0.1553,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.71,
931
+ "learning_rate": 4.16087962962963e-06,
932
+ "loss": 0.1579,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.71,
937
+ "learning_rate": 4.155092592592593e-06,
938
+ "loss": 0.1554,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.72,
943
+ "learning_rate": 4.149305555555556e-06,
944
+ "loss": 0.1592,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.72,
949
+ "learning_rate": 4.143518518518519e-06,
950
+ "loss": 0.1588,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.72,
955
+ "learning_rate": 4.137731481481482e-06,
956
+ "loss": 0.1674,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.73,
961
+ "learning_rate": 4.131944444444444e-06,
962
+ "loss": 0.1578,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.73,
967
+ "learning_rate": 4.126157407407408e-06,
968
+ "loss": 0.1577,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.74,
973
+ "learning_rate": 4.1203703703703705e-06,
974
+ "loss": 0.1626,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.74,
979
+ "learning_rate": 4.114583333333334e-06,
980
+ "loss": 0.1599,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.75,
985
+ "learning_rate": 4.108796296296297e-06,
986
+ "loss": 0.1635,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.75,
991
+ "learning_rate": 4.10300925925926e-06,
992
+ "loss": 0.1547,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.76,
997
+ "learning_rate": 4.097222222222222e-06,
998
+ "loss": 0.161,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.76,
1003
+ "learning_rate": 4.0914351851851855e-06,
1004
+ "loss": 0.1591,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.77,
1009
+ "learning_rate": 4.085648148148149e-06,
1010
+ "loss": 0.1597,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.77,
1015
+ "learning_rate": 4.079861111111111e-06,
1016
+ "loss": 0.1602,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.78,
1021
+ "learning_rate": 4.074074074074074e-06,
1022
+ "loss": 0.1518,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.78,
1027
+ "learning_rate": 4.068287037037037e-06,
1028
+ "loss": 0.1486,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.78,
1033
+ "learning_rate": 4.0625000000000005e-06,
1034
+ "loss": 0.1575,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.79,
1039
+ "learning_rate": 4.056712962962963e-06,
1040
+ "loss": 0.1633,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.79,
1045
+ "learning_rate": 4.050925925925927e-06,
1046
+ "loss": 0.1597,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.8,
1051
+ "learning_rate": 4.045138888888889e-06,
1052
+ "loss": 0.1623,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.8,
1057
+ "learning_rate": 4.039351851851852e-06,
1058
+ "loss": 0.1618,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.81,
1063
+ "learning_rate": 4.033564814814815e-06,
1064
+ "loss": 0.16,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.81,
1069
+ "learning_rate": 4.027777777777779e-06,
1070
+ "loss": 0.1481,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.82,
1075
+ "learning_rate": 4.021990740740741e-06,
1076
+ "loss": 0.1452,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.82,
1081
+ "learning_rate": 4.016203703703704e-06,
1082
+ "loss": 0.1626,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.83,
1087
+ "learning_rate": 4.010416666666667e-06,
1088
+ "loss": 0.158,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.83,
1093
+ "learning_rate": 4.00462962962963e-06,
1094
+ "loss": 0.1408,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.83,
1099
+ "learning_rate": 3.998842592592593e-06,
1100
+ "loss": 0.1468,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.84,
1105
+ "learning_rate": 3.993055555555556e-06,
1106
+ "loss": 0.1486,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.84,
1111
+ "learning_rate": 3.987268518518519e-06,
1112
+ "loss": 0.1613,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.85,
1117
+ "learning_rate": 3.9814814814814814e-06,
1118
+ "loss": 0.1525,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.85,
1123
+ "learning_rate": 3.975694444444445e-06,
1124
+ "loss": 0.1568,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.86,
1129
+ "learning_rate": 3.969907407407408e-06,
1130
+ "loss": 0.1393,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.86,
1135
+ "learning_rate": 3.964120370370371e-06,
1136
+ "loss": 0.1466,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.87,
1141
+ "learning_rate": 3.958333333333333e-06,
1142
+ "loss": 0.1472,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.87,
1147
+ "learning_rate": 3.9525462962962964e-06,
1148
+ "loss": 0.144,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.88,
1153
+ "learning_rate": 3.94675925925926e-06,
1154
+ "loss": 0.1435,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.88,
1159
+ "learning_rate": 3.940972222222223e-06,
1160
+ "loss": 0.1426,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.89,
1165
+ "learning_rate": 3.935185185185186e-06,
1166
+ "loss": 0.15,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.89,
1171
+ "learning_rate": 3.929398148148148e-06,
1172
+ "loss": 0.134,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.89,
1177
+ "learning_rate": 3.9236111111111114e-06,
1178
+ "loss": 0.1379,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.9,
1183
+ "learning_rate": 3.917824074074074e-06,
1184
+ "loss": 0.1496,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.9,
1189
+ "learning_rate": 3.912037037037038e-06,
1190
+ "loss": 0.1437,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.91,
1195
+ "learning_rate": 3.90625e-06,
1196
+ "loss": 0.1479,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.91,
1201
+ "learning_rate": 3.900462962962963e-06,
1202
+ "loss": 0.135,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.92,
1207
+ "learning_rate": 3.894675925925926e-06,
1208
+ "loss": 0.1521,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.92,
1213
+ "learning_rate": 3.88888888888889e-06,
1214
+ "loss": 0.141,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.93,
1219
+ "learning_rate": 3.883101851851852e-06,
1220
+ "loss": 0.1457,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.93,
1225
+ "learning_rate": 3.877314814814815e-06,
1226
+ "loss": 0.1364,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.94,
1231
+ "learning_rate": 3.871527777777778e-06,
1232
+ "loss": 0.147,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.94,
1237
+ "learning_rate": 3.865740740740741e-06,
1238
+ "loss": 0.1506,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.94,
1243
+ "learning_rate": 3.859953703703704e-06,
1244
+ "loss": 0.139,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.95,
1249
+ "learning_rate": 3.854166666666667e-06,
1250
+ "loss": 0.1434,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.95,
1255
+ "learning_rate": 3.84837962962963e-06,
1256
+ "loss": 0.1327,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.96,
1261
+ "learning_rate": 3.842592592592592e-06,
1262
+ "loss": 0.1402,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.96,
1267
+ "learning_rate": 3.836805555555556e-06,
1268
+ "loss": 0.146,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.97,
1273
+ "learning_rate": 3.831018518518519e-06,
1274
+ "loss": 0.144,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.97,
1279
+ "learning_rate": 3.825231481481482e-06,
1280
+ "loss": 0.1411,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.98,
1285
+ "learning_rate": 3.819444444444444e-06,
1286
+ "loss": 0.1485,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.98,
1291
+ "learning_rate": 3.813657407407408e-06,
1292
+ "loss": 0.152,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.99,
1297
+ "learning_rate": 3.8078703703703705e-06,
1298
+ "loss": 0.1448,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.99,
1303
+ "learning_rate": 3.8020833333333333e-06,
1304
+ "loss": 0.1381,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.0,
1309
+ "learning_rate": 3.796296296296297e-06,
1310
+ "loss": 0.1248,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.0,
1315
+ "learning_rate": 3.7905092592592596e-06,
1316
+ "loss": 0.1404,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.0,
1321
+ "learning_rate": 3.7847222222222224e-06,
1322
+ "loss": 0.1395,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.01,
1327
+ "learning_rate": 3.778935185185186e-06,
1328
+ "loss": 0.1295,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.01,
1333
+ "learning_rate": 3.7731481481481487e-06,
1334
+ "loss": 0.1347,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.02,
1339
+ "learning_rate": 3.7673611111111114e-06,
1340
+ "loss": 0.1427,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.02,
1345
+ "learning_rate": 3.761574074074074e-06,
1346
+ "loss": 0.1248,
1347
+ "step": 223
1348
+ }
1349
+ ],
1350
+ "logging_steps": 1,
1351
+ "max_steps": 872,
1352
+ "num_train_epochs": 4,
1353
+ "save_steps": 500,
1354
+ "total_flos": 2.4928313253424005e+18,
1355
+ "trial_name": null,
1356
+ "trial_params": null
1357
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5b1fe18443fa5c3619703cb9fca3310d4dd693baf17ef3d04961eaf98707bc0
3
+ size 6203
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)