casual commited on
Commit
46d1c46
1 Parent(s): 1762bf0

End of training

Browse files
Files changed (1) hide show
  1. README.md +31 -6
README.md CHANGED
@@ -3,6 +3,11 @@ license: apache-2.0
3
  base_model: distilbert/distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
 
 
 
 
 
6
  model-index:
7
  - name: nlp_til
8
  results: []
@@ -15,7 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.2417
 
 
 
 
19
 
20
  ## Model description
21
 
@@ -40,14 +49,30 @@ The following hyperparameters were used during training:
40
  - seed: 42
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
- - num_epochs: 2
44
 
45
  ### Training results
46
 
47
- | Training Loss | Epoch | Step | Validation Loss |
48
- |:-------------:|:-----:|:----:|:---------------:|
49
- | No log | 1.0 | 219 | 0.2454 |
50
- | No log | 2.0 | 438 | 0.2417 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
 
53
  ### Framework versions
 
3
  base_model: distilbert/distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
  model-index:
12
  - name: nlp_til
13
  results: []
 
20
 
21
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.1994
24
+ - Precision: 0.4726
25
+ - Recall: 0.5278
26
+ - F1: 0.4987
27
+ - Accuracy: 0.9007
28
 
29
  ## Model description
30
 
 
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 18
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 219 | 0.2462 | 0.3017 | 0.3623 | 0.3292 | 0.8584 |
59
+ | No log | 2.0 | 438 | 0.2436 | 0.3176 | 0.3485 | 0.3323 | 0.8656 |
60
+ | 0.2463 | 3.0 | 657 | 0.2434 | 0.3333 | 0.4792 | 0.3932 | 0.8622 |
61
+ | 0.2463 | 4.0 | 876 | 0.2402 | 0.3398 | 0.3567 | 0.3480 | 0.8675 |
62
+ | 0.2453 | 5.0 | 1095 | 0.2388 | 0.3299 | 0.3708 | 0.3491 | 0.8686 |
63
+ | 0.2453 | 6.0 | 1314 | 0.2381 | 0.3230 | 0.3740 | 0.3467 | 0.8689 |
64
+ | 0.2421 | 7.0 | 1533 | 0.2384 | 0.3448 | 0.3508 | 0.3477 | 0.8691 |
65
+ | 0.2421 | 8.0 | 1752 | 0.2343 | 0.3427 | 0.3711 | 0.3563 | 0.8705 |
66
+ | 0.2421 | 9.0 | 1971 | 0.2334 | 0.3448 | 0.3433 | 0.3440 | 0.8713 |
67
+ | 0.2388 | 10.0 | 2190 | 0.2314 | 0.3696 | 0.4533 | 0.4072 | 0.8768 |
68
+ | 0.2388 | 11.0 | 2409 | 0.2238 | 0.3846 | 0.4643 | 0.4207 | 0.8812 |
69
+ | 0.2337 | 12.0 | 2628 | 0.2216 | 0.3968 | 0.4703 | 0.4305 | 0.8832 |
70
+ | 0.2337 | 13.0 | 2847 | 0.2135 | 0.4169 | 0.4939 | 0.4521 | 0.8898 |
71
+ | 0.2268 | 14.0 | 3066 | 0.2117 | 0.4387 | 0.5200 | 0.4759 | 0.8919 |
72
+ | 0.2268 | 15.0 | 3285 | 0.2059 | 0.4565 | 0.5146 | 0.4838 | 0.8963 |
73
+ | 0.2197 | 16.0 | 3504 | 0.2043 | 0.4669 | 0.5359 | 0.4990 | 0.8977 |
74
+ | 0.2197 | 17.0 | 3723 | 0.2005 | 0.4701 | 0.5356 | 0.5007 | 0.8997 |
75
+ | 0.2197 | 18.0 | 3942 | 0.1994 | 0.4726 | 0.5278 | 0.4987 | 0.9007 |
76
 
77
 
78
  ### Framework versions