--- base_model: - catrinbaze/llama-refueled-merge - NousResearch/Meta-Llama-3-8B-instruct - Locutusque/Llama-3-Orca-1.0-8B - lighteternal/Llama3-merge-biomed-8b - mlabonne/NeuralDaredevil-8B-abliterated - mlabonne/Daredevil-8B tags: - merge - mergekit - lazymergekit - catrinbaze/llama-refueled-merge - NousResearch/Meta-Llama-3-8B-instruct - Locutusque/Llama-3-Orca-1.0-8B - lighteternal/Llama3-merge-biomed-8b - mlabonne/NeuralDaredevil-8B-abliterated - mlabonne/Daredevil-8B --- # merge-llama-3-8b merge-llama-3-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [catrinbaze/llama-refueled-merge](https://huggingface.co/catrinbaze/llama-refueled-merge) * [NousResearch/Meta-Llama-3-8B-instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-instruct) * [Locutusque/Llama-3-Orca-1.0-8B](https://huggingface.co/Locutusque/Llama-3-Orca-1.0-8B) * [lighteternal/Llama3-merge-biomed-8b](https://huggingface.co/lighteternal/Llama3-merge-biomed-8b) * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) * [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) ## 🧩 Configuration ```yaml slices: models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: catrinbaze/llama-refueled-merge parameters: density: 0.6 weight: 0.6 - model: NousResearch/Meta-Llama-3-8B-instruct parameters: density: 0.58 weight: 0.2 - model: Locutusque/Llama-3-Orca-1.0-8B parameters: density: 0.56 weight: 0.05 - model: lighteternal/Llama3-merge-biomed-8b parameters: density: 0.56 weight: 0.05 - model: mlabonne/NeuralDaredevil-8B-abliterated parameters: density: 0.55 weight: 0.05 - model: mlabonne/Daredevil-8B parameters: density: 0.55 weight: 0.05 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "catrinbaze/merge-llama-3-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```