|
import io |
|
import logging |
|
|
|
import soundfile |
|
import torch |
|
import torchaudio |
|
from flask import Flask, request, send_file |
|
from flask_cors import CORS |
|
|
|
from inference.infer_tool import Svc, RealTimeVC |
|
|
|
app = Flask(__name__) |
|
|
|
CORS(app) |
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
|
|
|
|
@app.route("/voiceChangeModel", methods=["POST"]) |
|
def voice_change_model(): |
|
request_form = request.form |
|
wave_file = request.files.get("sample", None) |
|
|
|
f_pitch_change = float(request_form.get("fPitchChange", 0)) |
|
|
|
daw_sample = int(float(request_form.get("sampleRate", 0))) |
|
speaker_id = int(float(request_form.get("sSpeakId", 0))) |
|
|
|
input_wav_path = io.BytesIO(wave_file.read()) |
|
|
|
|
|
if raw_infer: |
|
|
|
out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path, cluster_infer_ratio=0, |
|
auto_predict_f0=False, noice_scale=0.4, f0_filter=False) |
|
tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample) |
|
else: |
|
out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path, cluster_infer_ratio=0, |
|
auto_predict_f0=False, noice_scale=0.4, f0_filter=False) |
|
tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample) |
|
|
|
out_wav_path = io.BytesIO() |
|
soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav") |
|
out_wav_path.seek(0) |
|
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
|
|
|
raw_infer = True |
|
|
|
model_name = "logs/32k/G_174000-Copy1.pth" |
|
config_name = "configs/config.json" |
|
cluster_model_path = "logs/44k/kmeans_10000.pt" |
|
svc_model = Svc(model_name, config_name, cluster_model_path=cluster_model_path) |
|
svc = RealTimeVC() |
|
|
|
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False) |
|
|