|
import logging |
|
import multiprocessing |
|
import time |
|
|
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
|
|
import os |
|
import json |
|
import argparse |
|
import itertools |
|
import math |
|
import torch |
|
from torch import nn, optim |
|
from torch.nn import functional as F |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torch.multiprocessing as mp |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.cuda.amp import autocast, GradScaler |
|
|
|
import modules.commons as commons |
|
import utils |
|
from data_utils import TextAudioSpeakerLoader, TextAudioCollate |
|
from models import ( |
|
SynthesizerTrn, |
|
MultiPeriodDiscriminator, |
|
) |
|
from modules.losses import ( |
|
kl_loss, |
|
generator_loss, discriminator_loss, feature_loss |
|
) |
|
|
|
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch |
|
|
|
torch.backends.cudnn.benchmark = True |
|
global_step = 0 |
|
start_time = time.time() |
|
|
|
|
|
|
|
|
|
def main(): |
|
"""Assume Single Node Multi GPUs Training Only""" |
|
assert torch.cuda.is_available(), "CPU training is not allowed." |
|
hps = utils.get_hparams() |
|
|
|
n_gpus = torch.cuda.device_count() |
|
os.environ['MASTER_ADDR'] = 'localhost' |
|
os.environ['MASTER_PORT'] = hps.train.port |
|
|
|
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) |
|
|
|
|
|
def run(rank, n_gpus, hps): |
|
global global_step |
|
if rank == 0: |
|
logger = utils.get_logger(hps.model_dir) |
|
logger.info(hps) |
|
utils.check_git_hash(hps.model_dir) |
|
writer = SummaryWriter(log_dir=hps.model_dir) |
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) |
|
|
|
|
|
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank) |
|
torch.manual_seed(hps.train.seed) |
|
torch.cuda.set_device(rank) |
|
collate_fn = TextAudioCollate() |
|
all_in_mem = hps.train.all_in_mem |
|
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps, all_in_mem=all_in_mem) |
|
num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count() |
|
if all_in_mem: |
|
num_workers = 0 |
|
train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True, |
|
batch_size=hps.train.batch_size, collate_fn=collate_fn) |
|
if rank == 0: |
|
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps, all_in_mem=all_in_mem) |
|
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False, |
|
batch_size=1, pin_memory=False, |
|
drop_last=False, collate_fn=collate_fn) |
|
|
|
net_g = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model).cuda(rank) |
|
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) |
|
optim_g = torch.optim.AdamW( |
|
net_g.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps) |
|
optim_d = torch.optim.AdamW( |
|
net_d.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps) |
|
net_g = DDP(net_g, device_ids=[rank]) |
|
net_d = DDP(net_d, device_ids=[rank]) |
|
|
|
skip_optimizer = False |
|
try: |
|
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, |
|
optim_g, skip_optimizer) |
|
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, |
|
optim_d, skip_optimizer) |
|
epoch_str = max(epoch_str, 1) |
|
name=utils.latest_checkpoint_path(hps.model_dir, "D_*.pth") |
|
global_step=int(name[name.rfind("_")+1:name.rfind(".")])+1 |
|
|
|
except: |
|
print("load old checkpoint failed...") |
|
epoch_str = 1 |
|
global_step = 0 |
|
if skip_optimizer: |
|
epoch_str = 1 |
|
global_step = 0 |
|
|
|
warmup_epoch = hps.train.warmup_epochs |
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2) |
|
|
|
scaler = GradScaler(enabled=hps.train.fp16_run) |
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1): |
|
|
|
if epoch > 1: |
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
if epoch <= warmup_epoch: |
|
for param_group in optim_g.param_groups: |
|
param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch |
|
for param_group in optim_d.param_groups: |
|
param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch |
|
|
|
if rank == 0: |
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, |
|
[train_loader, eval_loader], logger, [writer, writer_eval]) |
|
else: |
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, |
|
[train_loader, None], None, None) |
|
|
|
|
|
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): |
|
net_g, net_d = nets |
|
optim_g, optim_d = optims |
|
scheduler_g, scheduler_d = schedulers |
|
train_loader, eval_loader = loaders |
|
if writers is not None: |
|
writer, writer_eval = writers |
|
|
|
|
|
global global_step |
|
|
|
net_g.train() |
|
net_d.train() |
|
for batch_idx, items in enumerate(train_loader): |
|
c, f0, spec, y, spk, lengths, uv = items |
|
g = spk.cuda(rank, non_blocking=True) |
|
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True) |
|
c = c.cuda(rank, non_blocking=True) |
|
f0 = f0.cuda(rank, non_blocking=True) |
|
uv = uv.cuda(rank, non_blocking=True) |
|
lengths = lengths.cuda(rank, non_blocking=True) |
|
mel = spec_to_mel_torch( |
|
spec, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax) |
|
|
|
with autocast(enabled=hps.train.fp16_run): |
|
y_hat, ids_slice, z_mask, \ |
|
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths, |
|
spec_lengths=lengths) |
|
|
|
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) |
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.squeeze(1), |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax |
|
) |
|
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) |
|
|
|
|
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) |
|
|
|
with autocast(enabled=False): |
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) |
|
loss_disc_all = loss_disc |
|
|
|
optim_d.zero_grad() |
|
scaler.scale(loss_disc_all).backward() |
|
scaler.unscale_(optim_d) |
|
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) |
|
scaler.step(optim_d) |
|
|
|
with autocast(enabled=hps.train.fp16_run): |
|
|
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) |
|
with autocast(enabled=False): |
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel |
|
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl |
|
loss_fm = feature_loss(fmap_r, fmap_g) |
|
loss_gen, losses_gen = generator_loss(y_d_hat_g) |
|
loss_lf0 = F.mse_loss(pred_lf0, lf0) |
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0 |
|
optim_g.zero_grad() |
|
scaler.scale(loss_gen_all).backward() |
|
scaler.unscale_(optim_g) |
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) |
|
scaler.step(optim_g) |
|
scaler.update() |
|
|
|
if rank == 0: |
|
if global_step % hps.train.log_interval == 0: |
|
lr = optim_g.param_groups[0]['lr'] |
|
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] |
|
reference_loss=0 |
|
for i in losses: |
|
reference_loss += i |
|
logger.info('Train Epoch: {} [{:.0f}%]'.format( |
|
epoch, |
|
100. * batch_idx / len(train_loader))) |
|
logger.info(f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}, reference_loss: {reference_loss}") |
|
|
|
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, |
|
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} |
|
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl, |
|
"loss/g/lf0": loss_lf0}) |
|
|
|
|
|
|
|
|
|
image_dict = { |
|
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), |
|
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), |
|
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), |
|
"all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(), |
|
pred_lf0[0, 0, :].detach().cpu().numpy()), |
|
"all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(), |
|
norm_lf0[0, 0, :].detach().cpu().numpy()) |
|
} |
|
|
|
utils.summarize( |
|
writer=writer, |
|
global_step=global_step, |
|
images=image_dict, |
|
scalars=scalar_dict |
|
) |
|
|
|
if global_step % hps.train.eval_interval == 0: |
|
evaluate(hps, net_g, eval_loader, writer_eval) |
|
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, |
|
os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) |
|
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, |
|
os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) |
|
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0) |
|
if keep_ckpts > 0: |
|
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) |
|
|
|
global_step += 1 |
|
|
|
if rank == 0: |
|
global start_time |
|
now = time.time() |
|
durtaion = format(now - start_time, '.2f') |
|
logger.info(f'====> Epoch: {epoch}, cost {durtaion} s') |
|
start_time = now |
|
|
|
|
|
def evaluate(hps, generator, eval_loader, writer_eval): |
|
generator.eval() |
|
image_dict = {} |
|
audio_dict = {} |
|
with torch.no_grad(): |
|
for batch_idx, items in enumerate(eval_loader): |
|
c, f0, spec, y, spk, _, uv = items |
|
g = spk[:1].cuda(0) |
|
spec, y = spec[:1].cuda(0), y[:1].cuda(0) |
|
c = c[:1].cuda(0) |
|
f0 = f0[:1].cuda(0) |
|
uv= uv[:1].cuda(0) |
|
mel = spec_to_mel_torch( |
|
spec, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax) |
|
y_hat = generator.module.infer(c, f0, uv, g=g) |
|
|
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.squeeze(1).float(), |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax |
|
) |
|
|
|
audio_dict.update({ |
|
f"gen/audio_{batch_idx}": y_hat[0], |
|
f"gt/audio_{batch_idx}": y[0] |
|
}) |
|
image_dict.update({ |
|
f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()), |
|
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy()) |
|
}) |
|
utils.summarize( |
|
writer=writer_eval, |
|
global_step=global_step, |
|
images=image_dict, |
|
audios=audio_dict, |
|
audio_sampling_rate=hps.data.sampling_rate |
|
) |
|
generator.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|