|
--- |
|
language: fr |
|
tags: |
|
- conversational |
|
widget: |
|
- text: "bonjour." |
|
- text: "mais encore" |
|
- text: "est ce que l'argent achete le bonheur?" |
|
--- |
|
|
|
## a dialoggpt model trained on french opensubtitles with custom tokenizer |
|
trained with this notebook |
|
https://colab.research.google.com/drive/1pfCV3bngAmISNZVfDvBMyEhQKuYw37Rl#scrollTo=AyImj9qZYLRi&uniqifier=3 |
|
|
|
config from microsoft/DialoGPT-medium |
|
dataset generated from 2018 opensubtitle downloaded from opus folowing these guidelines |
|
https://github.com/PolyAI-LDN/conversational-datasets/tree/master/opensubtitles with this notebook |
|
https://colab.research.google.com/drive/1uyh3vJ9nEjqOHI68VD73qxt4olJzODxi#scrollTo=deaacv4XfLMk |
|
### How to use |
|
|
|
Now we are ready to try out how the model works as a chatting partner! |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelWithLMHead |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("cedpsam/chatbot_fr") |
|
|
|
model = AutoModelWithLMHead.from_pretrained("cedpsam/chatbot_fr") |
|
|
|
for step in range(6): |
|
# encode the new user input, add the eos_token and return a tensor in Pytorch |
|
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') |
|
# print(new_user_input_ids) |
|
|
|
# append the new user input tokens to the chat history |
|
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids |
|
|
|
# generated a response while limiting the total chat history to 1000 tokens, |
|
chat_history_ids = model.generate( |
|
bot_input_ids, max_length=1000, |
|
pad_token_id=tokenizer.eos_token_id, |
|
top_p=0.92, top_k = 50 |
|
) |
|
|
|
# pretty print last ouput tokens from bot |
|
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) |
|
|