cemilcelik
commited on
Commit
•
abc490f
1
Parent(s):
b006d0e
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 260.94 +/- 23.31
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2edcc6bb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2edcc6bc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2edcc6bcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2edcc6bd40>", "_build": "<function ActorCriticPolicy._build at 0x7f2edcc6bdd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2edcc6be60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2edcc6bef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2edcc6bf80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2edcc70050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2edcc700e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2edcc70170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2edccc1570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1114112, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661354048.6301513, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzXGBvNSYhLx2tVi9kS9XPPiB6r0/ajA9AACAPwAAgD8A9CY84eiSuuu/drlPE2K0n26tOn7TjjgAAIA/AACAPzN3Pj1cawY/ibmnPhScqr505A8+Mk52PAAAAAAAAAAAmv9HvMNtHLqIpzk4VQQNM4niprtqB123AACAPwAAgD/NzIQ47G+Guz6idbtCd448/Ci0PP6qc70AAIA/AACAP5oOjzwB3Z09aiJZvhQebb6sLc28m82DvQAAAAAAAAAA5gwTPSk0ebrwBZy6oDnpN6VQJ7vy4iA5AACAPwAAgD8z6+C8KS8iPn6JBb15goG+g3hVPQa0+TwAAAAAAAAAAM1MZDmurY26tfTNOo8cpDXIb0C69dLuuQAAgD8AAIA/M425vMO5J7qg1oe7ESz0teA0T7n9Wp86AACAPwAAgD/NKeS8Hx3yuYmrpDrLUzY2X5s2Oh73wLkAAIA/AACAP1qVtL0UDuG4TF89ubzrxrFoEsq7NnVgOAAAgD8AAIA/OgtkvuubgD/6pQu/8qHUvslor70uExi+AAAAAAAAAAAzO1M8FNxRPk0cHT7T2qG+FygOPr2L1b0AAAAAAAAAAA0Wgz2ow6U/8k/XPszh6r7O9mQ9a7cePgAAAAAAAAAAgHnjPdsLrD5F8xG+pQWLviVC8zwNqFu9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcY3PZP+uYUCUhpRSlIwBbJRN6AOMAXSUR0CWdjYRdyDJdX2UKGgGaAloD0MI5E7pYH1sZkCUhpRSlGgVTegDaBZHQJaFNkauOjt1fZQoaAZoCWgPQwj+nIL87JlkQJSGlFKUaBVN6ANoFkdAlomGgOBlMHV9lChoBmgJaA9DCO8DkNpEYWVAlIaUUpRoFU3oA2gWR0CWijCTlkpadX2UKGgGaAloD0MIDmYTYFi3YUCUhpRSlGgVTegDaBZHQJaLoGiYb851fZQoaAZoCWgPQwhQOSaL+ylgQJSGlFKUaBVN6ANoFkdAlqswHE/B33V9lChoBmgJaA9DCN17uOS4KlBAlIaUUpRoFUvOaBZHQJaxCQKa5PN1fZQoaAZoCWgPQwiXHeIftkpgQJSGlFKUaBVN6ANoFkdAlrFDnied1HV9lChoBmgJaA9DCKQAUTDjMmVAlIaUUpRoFU3oA2gWR0CWsp/jsD4hdX2UKGgGaAloD0MI56kOuZmDYkCUhpRSlGgVTegDaBZHQJa8U4lyBCl1fZQoaAZoCWgPQwjBcoQMZNtlQJSGlFKUaBVN6ANoFkdAlr3njuKGcnV9lChoBmgJaA9DCK8+HvpucWVAlIaUUpRoFU3oA2gWR0CWwLpGnXNDdX2UKGgGaAloD0MIhdIXQs7bX0CUhpRSlGgVTegDaBZHQJbEDt8eCCl1fZQoaAZoCWgPQwio/Gt5ZbpkQJSGlFKUaBVN6ANoFkdAlsS24qgAZXV9lChoBmgJaA9DCGLZzCEpnGBAlIaUUpRoFU3oA2gWR0CWyoukUKzBdX2UKGgGaAloD0MI06I+yR2AZ0CUhpRSlGgVTegDaBZHQJbN4CV8kUt1fZQoaAZoCWgPQwiUMxR3PKthQJSGlFKUaBVN6ANoFkdAls44RdyDI3V9lChoBmgJaA9DCME3TZ8dfmZAlIaUUpRoFU3oA2gWR0CWzxKSPluFdX2UKGgGaAloD0MIw0oFFVWPMkCUhpRSlGgVS/poFkdAls8yxA0KqnV9lChoBmgJaA9DCL2PozmyNWVAlIaUUpRoFU3oA2gWR0CW2qHI6r/9dX2UKGgGaAloD0MIrmcIxyxhZkCUhpRSlGgVTegDaBZHQJbfRCKJl8R1fZQoaAZoCWgPQwiPiv87IqBiQJSGlFKUaBVN6ANoFkdAluC5vLowEnV9lChoBmgJaA9DCK1OzlDccmNAlIaUUpRoFU3oA2gWR0CXAItRvWH2dX2UKGgGaAloD0MIDMo0mtw3aECUhpRSlGgVTegDaBZHQJcG1l5GBnV1fZQoaAZoCWgPQwi3mnXG9/JjQJSGlFKUaBVN6ANoFkdAlwcYmois4nV9lChoBmgJaA9DCBbdek2P62NAlIaUUpRoFU3oA2gWR0CXCJwn6VMVdX2UKGgGaAloD0MImPxP/m7GcUCUhpRSlGgVTWECaBZHQJcPiGXXyy51fZQoaAZoCWgPQwiI1R9hmEBjQJSGlFKUaBVN6ANoFkdAlxNTqOcUd3V9lChoBmgJaA9DCEK0VrS5VGhAlIaUUpRoFU3oA2gWR0CXFQCojv/jdX2UKGgGaAloD0MI6Zyf4jhGckCUhpRSlGgVTXEDaBZHQJcVML4N7Sl1fZQoaAZoCWgPQwjlfoeiwKRhQJSGlFKUaBVN6ANoFkdAlxtOHN5dGHV9lChoBmgJaA9DCMpOP6iLuGRAlIaUUpRoFU3oA2gWR0CXIm8HObAldX2UKGgGaAloD0MIfO4E+6/aY0CUhpRSlGgVTegDaBZHQJcmHyoXKr91fZQoaAZoCWgPQwjlKEAUTMdnQJSGlFKUaBVN6ANoFkdAlybqOHWSU3V9lChoBmgJaA9DCPpjWptGaGVAlIaUUpRoFU3oA2gWR0CXJ7tDUmUodX2UKGgGaAloD0MIEsKjjaN0cUCUhpRSlGgVTWQDaBZHQJcxdPqLS/l1fZQoaAZoCWgPQwi5iO/ErFNmQJSGlFKUaBVN6ANoFkdAlzNc052hZnV9lChoBmgJaA9DCGXIsfWM5GNAlIaUUpRoFU3oA2gWR0CXN5LOAy2ydX2UKGgGaAloD0MIf/YjRWTbaECUhpRSlGgVTegDaBZHQJdYcYdhiLF1fZQoaAZoCWgPQwj0GOWZlxlnQJSGlFKUaBVN6ANoFkdAl16PkFOfunV9lChoBmgJaA9DCMxFfCfmEGVAlIaUUpRoFU3oA2gWR0CXXsvcrRShdX2UKGgGaAloD0MI86ykFd+7cUCUhpRSlGgVTesBaBZHQJdf2ylenht1fZQoaAZoCWgPQwi1iv7QTGpnQJSGlFKUaBVN6ANoFkdAl2AsA/9pAXV9lChoBmgJaA9DCAsIrYev62BAlIaUUpRoFU3oA2gWR0CXZqG5tm+TdX2UKGgGaAloD0MIbAVNSyzsYECUhpRSlGgVTegDaBZHQJdqN0gbIcR1fZQoaAZoCWgPQwh9IeS8/+NOQJSGlFKUaBVLymgWR0CXavMR6F/QdX2UKGgGaAloD0MIp+hILv9kYkCUhpRSlGgVTegDaBZHQJdrxfkWAPN1fZQoaAZoCWgPQwhy++WTlW5kQJSGlFKUaBVN6ANoFkdAl2vyiRGMGXV9lChoBmgJaA9DCGNgHccPbF5AlIaUUpRoFU3oA2gWR0CXdEZpSJj2dX2UKGgGaAloD0MIBK4rZgTWYUCUhpRSlGgVTegDaBZHQJd7EVgx8D11fZQoaAZoCWgPQwiq86j4v8lhQJSGlFKUaBVN6ANoFkdAl37IxtYSx3V9lChoBmgJaA9DCNLFppXCDmFAlIaUUpRoFU3oA2gWR0CXgIDdP+GXdX2UKGgGaAloD0MIR6rv/KJbZECUhpRSlGgVTegDaBZHQJeKmCnP3SN1fZQoaAZoCWgPQwhCzvv/OPNiQJSGlFKUaBVN6ANoFkdAl4xq/mDDj3V9lChoBmgJaA9DCPiMRGgEgmhAlIaUUpRoFU3oA2gWR0CXkKaBI4EPdX2UKGgGaAloD0MI8BXdes0rZ0CUhpRSlGgVTegDaBZHQJeVsx33Ycx1fZQoaAZoCWgPQwj/Bu3VBzlyQJSGlFKUaBVNqANoFkdAl7O+WWyC4HV9lChoBmgJaA9DCMcNv5tuIWFAlIaUUpRoFU3oA2gWR0CXtxFMIu5CdX2UKGgGaAloD0MICtl5G5sDY0CUhpRSlGgVTegDaBZHQJe4wB2fTTh1fZQoaAZoCWgPQwhvL2mM1kFgQJSGlFKUaBVN6ANoFkdAl796Cxu89XV9lChoBmgJaA9DCJ29M9oq4mdAlIaUUpRoFU3oA2gWR0CXw4M1jy4GdX2UKGgGaAloD0MIHF97ZknLYUCUhpRSlGgVTegDaBZHQJfEUpb2USt1fZQoaAZoCWgPQwhrKSDtf/ZhQJSGlFKUaBVN6ANoFkdAl8UipvP1MHV9lChoBmgJaA9DCGhCk8SSzGBAlIaUUpRoFU3oA2gWR0CXxUx+rlvIdX2UKGgGaAloD0MI3QphNZbmZkCUhpRSlGgVTegDaBZHQJfK2QNkOI91fZQoaAZoCWgPQwgIjsu4Kd9xQJSGlFKUaBVNlQFoFkdAl8+TZQHiWHV9lChoBmgJaA9DCMRCrWnebGBAlIaUUpRoFU3oA2gWR0CX0YbKifxudX2UKGgGaAloD0MIa9YZ3xcgVECUhpRSlGgVS+5oFkdAl9I6yv9tM3V9lChoBmgJaA9DCAtfX+tSwl1AlIaUUpRoFU3oA2gWR0CX1N1uR9w4dX2UKGgGaAloD0MISu6wiUwSZ0CUhpRSlGgVTegDaBZHQJfVq21D0Dl1fZQoaAZoCWgPQwhT6pJxzEByQJSGlFKUaBVN7wFoFkdAl9zCUC7sfXV9lChoBmgJaA9DCJwaaD5nd2hAlIaUUpRoFU3oA2gWR0CX370a6z3RdX2UKGgGaAloD0MIbOun/ywJZkCUhpRSlGgVTegDaBZHQJfhsBq9Gqh1fZQoaAZoCWgPQwhZhc0Al7ttQJSGlFKUaBVNOwJoFkdAl+WSCaqjrXV9lChoBmgJaA9DCFKY9zhTrmJAlIaUUpRoFU3oA2gWR0CX5foAGSpzdX2UKGgGaAloD0MInwPLETJ0ZECUhpRSlGgVTegDaBZHQJfrGI2wV0t1fZQoaAZoCWgPQwiwxW6fVXJjQJSGlFKUaBVN6ANoFkdAmAk4x+KCQXV9lChoBmgJaA9DCGEb8WS3cGNAlIaUUpRoFU3oA2gWR0CYDEvalDWtdX2UKGgGaAloD0MITZ6ymu5KcECUhpRSlGgVTX4DaBZHQJgTlbMX7+F1fZQoaAZoCWgPQwgt6L0xBOpiQJSGlFKUaBVN6ANoFkdAmBf43vQWvnV9lChoBmgJaA9DCC6Oyk0UKXBAlIaUUpRoFU1mA2gWR0CYH3S2H+IedX2UKGgGaAloD0MIbamDvJ7LZkCUhpRSlGgVTegDaBZHQJggK+TNdJJ1fZQoaAZoCWgPQwgc7bjhd9dHQJSGlFKUaBVL8WgWR0CYIZ0WuX/pdX2UKGgGaAloD0MI0uRiDCzvZ0CUhpRSlGgVTegDaBZHQJgk/kHUtqZ1fZQoaAZoCWgPQwjPu7GgsL9yQJSGlFKUaBVN5wJoFkdAmCcRdQfp2XV9lChoBmgJaA9DCGZmZmZmjGRAlIaUUpRoFU3oA2gWR0CYJ5q//NqydX2UKGgGaAloD0MIATW1bC3FZUCUhpRSlGgVTegDaBZHQJgqAgRsdkt1fZQoaAZoCWgPQwjekhywq4xkQJSGlFKUaBVN6ANoFkdAmCrAIQe3hHV9lChoBmgJaA9DCLd6TnofhHFAlIaUUpRoFU1oAWgWR0CYLEmdy1eCdX2UKGgGaAloD0MIfv578FpicECUhpRSlGgVTX0CaBZHQJgwVQUHpr11fZQoaAZoCWgPQwhMGTigpe1hQJSGlFKUaBVN6ANoFkdAmDDU7r9l3HV9lChoBmgJaA9DCFUwKqkTME9AlIaUUpRoFUvRaBZHQJgzUqnWJ791fZQoaAZoCWgPQwhAFMyYgoloQJSGlFKUaBVN6ANoFkdAmDOQ2hqTKXV9lChoBmgJaA9DCMXJ/Q7FiXFAlIaUUpRoFU1BA2gWR0CYNQrwOOKgdX2UKGgGaAloD0MICYhJuNBXckCUhpRSlGgVTaEBaBZHQJg2QqBmPHV1fZQoaAZoCWgPQwi688RztntkQJSGlFKUaBVN6ANoFkdAmDgW+49X93V9lChoBmgJaA9DCEshkEsc+l9AlIaUUpRoFU3oA2gWR0CYOGR5C4SZdX2UKGgGaAloD0MIoYDtYESvcUCUhpRSlGgVTcIBaBZHQJg5VNnGsFN1fZQoaAZoCWgPQwgSa/EpAO1vQJSGlFKUaBVNwQFoFkdAmD3eueSSvHV9lChoBmgJaA9DCGx3D9D95mNAlIaUUpRoFU3oA2gWR0CYPtOu7pV0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 272, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-debian-bullseye-sid #1 SMP Thu Aug 18 14:49:28 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.6.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:191ebd921b4eeb004c95e9938fea22b282fa12373b4f84c568d18a199abe0572
|
3 |
+
size 144277
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2edcc6bb90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2edcc6bc20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2edcc6bcb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2edcc6bd40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2edcc6bdd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2edcc6be60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2edcc6bef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2edcc6bf80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2edcc70050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2edcc700e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2edcc70170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2edccc1570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1114112,
|
46 |
+
"_total_timesteps": 1100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1661354048.6301513,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzXGBvNSYhLx2tVi9kS9XPPiB6r0/ajA9AACAPwAAgD8A9CY84eiSuuu/drlPE2K0n26tOn7TjjgAAIA/AACAPzN3Pj1cawY/ibmnPhScqr505A8+Mk52PAAAAAAAAAAAmv9HvMNtHLqIpzk4VQQNM4niprtqB123AACAPwAAgD/NzIQ47G+Guz6idbtCd448/Ci0PP6qc70AAIA/AACAP5oOjzwB3Z09aiJZvhQebb6sLc28m82DvQAAAAAAAAAA5gwTPSk0ebrwBZy6oDnpN6VQJ7vy4iA5AACAPwAAgD8z6+C8KS8iPn6JBb15goG+g3hVPQa0+TwAAAAAAAAAAM1MZDmurY26tfTNOo8cpDXIb0C69dLuuQAAgD8AAIA/M425vMO5J7qg1oe7ESz0teA0T7n9Wp86AACAPwAAgD/NKeS8Hx3yuYmrpDrLUzY2X5s2Oh73wLkAAIA/AACAP1qVtL0UDuG4TF89ubzrxrFoEsq7NnVgOAAAgD8AAIA/OgtkvuubgD/6pQu/8qHUvslor70uExi+AAAAAAAAAAAzO1M8FNxRPk0cHT7T2qG+FygOPr2L1b0AAAAAAAAAAA0Wgz2ow6U/8k/XPszh6r7O9mQ9a7cePgAAAAAAAAAAgHnjPdsLrD5F8xG+pQWLviVC8zwNqFu9AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.012829090909090901,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcY3PZP+uYUCUhpRSlIwBbJRN6AOMAXSUR0CWdjYRdyDJdX2UKGgGaAloD0MI5E7pYH1sZkCUhpRSlGgVTegDaBZHQJaFNkauOjt1fZQoaAZoCWgPQwj+nIL87JlkQJSGlFKUaBVN6ANoFkdAlomGgOBlMHV9lChoBmgJaA9DCO8DkNpEYWVAlIaUUpRoFU3oA2gWR0CWijCTlkpadX2UKGgGaAloD0MIDmYTYFi3YUCUhpRSlGgVTegDaBZHQJaLoGiYb851fZQoaAZoCWgPQwhQOSaL+ylgQJSGlFKUaBVN6ANoFkdAlqswHE/B33V9lChoBmgJaA9DCN17uOS4KlBAlIaUUpRoFUvOaBZHQJaxCQKa5PN1fZQoaAZoCWgPQwiXHeIftkpgQJSGlFKUaBVN6ANoFkdAlrFDnied1HV9lChoBmgJaA9DCKQAUTDjMmVAlIaUUpRoFU3oA2gWR0CWsp/jsD4hdX2UKGgGaAloD0MI56kOuZmDYkCUhpRSlGgVTegDaBZHQJa8U4lyBCl1fZQoaAZoCWgPQwjBcoQMZNtlQJSGlFKUaBVN6ANoFkdAlr3njuKGcnV9lChoBmgJaA9DCK8+HvpucWVAlIaUUpRoFU3oA2gWR0CWwLpGnXNDdX2UKGgGaAloD0MIhdIXQs7bX0CUhpRSlGgVTegDaBZHQJbEDt8eCCl1fZQoaAZoCWgPQwio/Gt5ZbpkQJSGlFKUaBVN6ANoFkdAlsS24qgAZXV9lChoBmgJaA9DCGLZzCEpnGBAlIaUUpRoFU3oA2gWR0CWyoukUKzBdX2UKGgGaAloD0MI06I+yR2AZ0CUhpRSlGgVTegDaBZHQJbN4CV8kUt1fZQoaAZoCWgPQwiUMxR3PKthQJSGlFKUaBVN6ANoFkdAls44RdyDI3V9lChoBmgJaA9DCME3TZ8dfmZAlIaUUpRoFU3oA2gWR0CWzxKSPluFdX2UKGgGaAloD0MIw0oFFVWPMkCUhpRSlGgVS/poFkdAls8yxA0KqnV9lChoBmgJaA9DCL2PozmyNWVAlIaUUpRoFU3oA2gWR0CW2qHI6r/9dX2UKGgGaAloD0MIrmcIxyxhZkCUhpRSlGgVTegDaBZHQJbfRCKJl8R1fZQoaAZoCWgPQwiPiv87IqBiQJSGlFKUaBVN6ANoFkdAluC5vLowEnV9lChoBmgJaA9DCK1OzlDccmNAlIaUUpRoFU3oA2gWR0CXAItRvWH2dX2UKGgGaAloD0MIDMo0mtw3aECUhpRSlGgVTegDaBZHQJcG1l5GBnV1fZQoaAZoCWgPQwi3mnXG9/JjQJSGlFKUaBVN6ANoFkdAlwcYmois4nV9lChoBmgJaA9DCBbdek2P62NAlIaUUpRoFU3oA2gWR0CXCJwn6VMVdX2UKGgGaAloD0MImPxP/m7GcUCUhpRSlGgVTWECaBZHQJcPiGXXyy51fZQoaAZoCWgPQwiI1R9hmEBjQJSGlFKUaBVN6ANoFkdAlxNTqOcUd3V9lChoBmgJaA9DCEK0VrS5VGhAlIaUUpRoFU3oA2gWR0CXFQCojv/jdX2UKGgGaAloD0MI6Zyf4jhGckCUhpRSlGgVTXEDaBZHQJcVML4N7Sl1fZQoaAZoCWgPQwjlfoeiwKRhQJSGlFKUaBVN6ANoFkdAlxtOHN5dGHV9lChoBmgJaA9DCMpOP6iLuGRAlIaUUpRoFU3oA2gWR0CXIm8HObAldX2UKGgGaAloD0MIfO4E+6/aY0CUhpRSlGgVTegDaBZHQJcmHyoXKr91fZQoaAZoCWgPQwjlKEAUTMdnQJSGlFKUaBVN6ANoFkdAlybqOHWSU3V9lChoBmgJaA9DCPpjWptGaGVAlIaUUpRoFU3oA2gWR0CXJ7tDUmUodX2UKGgGaAloD0MIEsKjjaN0cUCUhpRSlGgVTWQDaBZHQJcxdPqLS/l1fZQoaAZoCWgPQwi5iO/ErFNmQJSGlFKUaBVN6ANoFkdAlzNc052hZnV9lChoBmgJaA9DCGXIsfWM5GNAlIaUUpRoFU3oA2gWR0CXN5LOAy2ydX2UKGgGaAloD0MIf/YjRWTbaECUhpRSlGgVTegDaBZHQJdYcYdhiLF1fZQoaAZoCWgPQwj0GOWZlxlnQJSGlFKUaBVN6ANoFkdAl16PkFOfunV9lChoBmgJaA9DCMxFfCfmEGVAlIaUUpRoFU3oA2gWR0CXXsvcrRShdX2UKGgGaAloD0MI86ykFd+7cUCUhpRSlGgVTesBaBZHQJdf2ylenht1fZQoaAZoCWgPQwi1iv7QTGpnQJSGlFKUaBVN6ANoFkdAl2AsA/9pAXV9lChoBmgJaA9DCAsIrYev62BAlIaUUpRoFU3oA2gWR0CXZqG5tm+TdX2UKGgGaAloD0MIbAVNSyzsYECUhpRSlGgVTegDaBZHQJdqN0gbIcR1fZQoaAZoCWgPQwh9IeS8/+NOQJSGlFKUaBVLymgWR0CXavMR6F/QdX2UKGgGaAloD0MIp+hILv9kYkCUhpRSlGgVTegDaBZHQJdrxfkWAPN1fZQoaAZoCWgPQwhy++WTlW5kQJSGlFKUaBVN6ANoFkdAl2vyiRGMGXV9lChoBmgJaA9DCGNgHccPbF5AlIaUUpRoFU3oA2gWR0CXdEZpSJj2dX2UKGgGaAloD0MIBK4rZgTWYUCUhpRSlGgVTegDaBZHQJd7EVgx8D11fZQoaAZoCWgPQwiq86j4v8lhQJSGlFKUaBVN6ANoFkdAl37IxtYSx3V9lChoBmgJaA9DCNLFppXCDmFAlIaUUpRoFU3oA2gWR0CXgIDdP+GXdX2UKGgGaAloD0MIR6rv/KJbZECUhpRSlGgVTegDaBZHQJeKmCnP3SN1fZQoaAZoCWgPQwhCzvv/OPNiQJSGlFKUaBVN6ANoFkdAl4xq/mDDj3V9lChoBmgJaA9DCPiMRGgEgmhAlIaUUpRoFU3oA2gWR0CXkKaBI4EPdX2UKGgGaAloD0MI8BXdes0rZ0CUhpRSlGgVTegDaBZHQJeVsx33Ycx1fZQoaAZoCWgPQwj/Bu3VBzlyQJSGlFKUaBVNqANoFkdAl7O+WWyC4HV9lChoBmgJaA9DCMcNv5tuIWFAlIaUUpRoFU3oA2gWR0CXtxFMIu5CdX2UKGgGaAloD0MICtl5G5sDY0CUhpRSlGgVTegDaBZHQJe4wB2fTTh1fZQoaAZoCWgPQwhvL2mM1kFgQJSGlFKUaBVN6ANoFkdAl796Cxu89XV9lChoBmgJaA9DCJ29M9oq4mdAlIaUUpRoFU3oA2gWR0CXw4M1jy4GdX2UKGgGaAloD0MIHF97ZknLYUCUhpRSlGgVTegDaBZHQJfEUpb2USt1fZQoaAZoCWgPQwhrKSDtf/ZhQJSGlFKUaBVN6ANoFkdAl8UipvP1MHV9lChoBmgJaA9DCGhCk8SSzGBAlIaUUpRoFU3oA2gWR0CXxUx+rlvIdX2UKGgGaAloD0MI3QphNZbmZkCUhpRSlGgVTegDaBZHQJfK2QNkOI91fZQoaAZoCWgPQwgIjsu4Kd9xQJSGlFKUaBVNlQFoFkdAl8+TZQHiWHV9lChoBmgJaA9DCMRCrWnebGBAlIaUUpRoFU3oA2gWR0CX0YbKifxudX2UKGgGaAloD0MIa9YZ3xcgVECUhpRSlGgVS+5oFkdAl9I6yv9tM3V9lChoBmgJaA9DCAtfX+tSwl1AlIaUUpRoFU3oA2gWR0CX1N1uR9w4dX2UKGgGaAloD0MISu6wiUwSZ0CUhpRSlGgVTegDaBZHQJfVq21D0Dl1fZQoaAZoCWgPQwhT6pJxzEByQJSGlFKUaBVN7wFoFkdAl9zCUC7sfXV9lChoBmgJaA9DCJwaaD5nd2hAlIaUUpRoFU3oA2gWR0CX370a6z3RdX2UKGgGaAloD0MIbOun/ywJZkCUhpRSlGgVTegDaBZHQJfhsBq9Gqh1fZQoaAZoCWgPQwhZhc0Al7ttQJSGlFKUaBVNOwJoFkdAl+WSCaqjrXV9lChoBmgJaA9DCFKY9zhTrmJAlIaUUpRoFU3oA2gWR0CX5foAGSpzdX2UKGgGaAloD0MInwPLETJ0ZECUhpRSlGgVTegDaBZHQJfrGI2wV0t1fZQoaAZoCWgPQwiwxW6fVXJjQJSGlFKUaBVN6ANoFkdAmAk4x+KCQXV9lChoBmgJaA9DCGEb8WS3cGNAlIaUUpRoFU3oA2gWR0CYDEvalDWtdX2UKGgGaAloD0MITZ6ymu5KcECUhpRSlGgVTX4DaBZHQJgTlbMX7+F1fZQoaAZoCWgPQwgt6L0xBOpiQJSGlFKUaBVN6ANoFkdAmBf43vQWvnV9lChoBmgJaA9DCC6Oyk0UKXBAlIaUUpRoFU1mA2gWR0CYH3S2H+IedX2UKGgGaAloD0MIbamDvJ7LZkCUhpRSlGgVTegDaBZHQJggK+TNdJJ1fZQoaAZoCWgPQwgc7bjhd9dHQJSGlFKUaBVL8WgWR0CYIZ0WuX/pdX2UKGgGaAloD0MI0uRiDCzvZ0CUhpRSlGgVTegDaBZHQJgk/kHUtqZ1fZQoaAZoCWgPQwjPu7GgsL9yQJSGlFKUaBVN5wJoFkdAmCcRdQfp2XV9lChoBmgJaA9DCGZmZmZmjGRAlIaUUpRoFU3oA2gWR0CYJ5q//NqydX2UKGgGaAloD0MIATW1bC3FZUCUhpRSlGgVTegDaBZHQJgqAgRsdkt1fZQoaAZoCWgPQwjekhywq4xkQJSGlFKUaBVN6ANoFkdAmCrAIQe3hHV9lChoBmgJaA9DCLd6TnofhHFAlIaUUpRoFU1oAWgWR0CYLEmdy1eCdX2UKGgGaAloD0MIfv578FpicECUhpRSlGgVTX0CaBZHQJgwVQUHpr11fZQoaAZoCWgPQwhMGTigpe1hQJSGlFKUaBVN6ANoFkdAmDDU7r9l3HV9lChoBmgJaA9DCFUwKqkTME9AlIaUUpRoFUvRaBZHQJgzUqnWJ791fZQoaAZoCWgPQwhAFMyYgoloQJSGlFKUaBVN6ANoFkdAmDOQ2hqTKXV9lChoBmgJaA9DCMXJ/Q7FiXFAlIaUUpRoFU1BA2gWR0CYNQrwOOKgdX2UKGgGaAloD0MICYhJuNBXckCUhpRSlGgVTaEBaBZHQJg2QqBmPHV1fZQoaAZoCWgPQwi688RztntkQJSGlFKUaBVN6ANoFkdAmDgW+49X93V9lChoBmgJaA9DCEshkEsc+l9AlIaUUpRoFU3oA2gWR0CYOGR5C4SZdX2UKGgGaAloD0MIoYDtYESvcUCUhpRSlGgVTcIBaBZHQJg5VNnGsFN1fZQoaAZoCWgPQwgSa/EpAO1vQJSGlFKUaBVNwQFoFkdAmD3eueSSvHV9lChoBmgJaA9DCGx3D9D95mNAlIaUUpRoFU3oA2gWR0CYPtOu7pV0dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 272,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db3b7db25bfd7cbf687929818041f142a9c2d9a3aa53f59ea7d54dd8a8a32fdf
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cc81bc9a35cf4c545e880715c80bdcadede7883e2613b1f0c92b3080419e096
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-debian-bullseye-sid #1 SMP Thu Aug 18 14:49:28 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.94411117846767, "std_reward": 23.30980589643254, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-24T15:47:24.496642"}
|