cfahlgren1 HF staff commited on
Commit
62a0223
1 Parent(s): 6ab6796

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +154 -197
README.md CHANGED
@@ -1,201 +1,158 @@
1
  ---
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-instruct
3
+ tags:
4
+ - instruct
5
+ - finetune
6
  library_name: transformers
7
+ license: cc-by-sa-4.0
8
+ pipeline_tag: text-generation
9
  ---
10
 
11
+ # **Natural-SQL-7B by ChatDB**
12
+ ## Natural-SQL-7B is a model with very strong performance in Text-to-SQL instructions, has an excellent understanding of complex questions, and outperforms models of the same size in its space.
13
+
14
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600">
15
+
16
+ [ChatDB.ai](https://chatdb.ai) | [Notebook](https://github.com/cfahlgren1/natural-sql/blob/main/natural-sql-7b.ipynb) | [Twitter](https://twitter.com/calebfahlgren)
17
+
18
+ # **Benchmarks**
19
+ ### *Results on Novel Datasets not trained on via SQL-Eval*
20
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/5ynfoKPzI3_-WasQQt7qR.png" width="800">
21
+
22
+ <em>Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)</em>👏
23
+
24
+ Natural-SQL also can handle complex, compound questions that other models typically struggle with. There is a more detailed writeup Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql).
25
+ # Usage
26
+
27
+ Make sure you have the correct version of the transformers library installed:
28
+
29
+ ```sh
30
+ pip install transformers==4.35.2
31
+ ```
32
+
33
+ ### Loading the Model
34
+
35
+ Use the following Python code to load the model:
36
+
37
+ ```python
38
+ import torch
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
+ tokenizer = AutoTokenizer.from_pretrained("chatdb/natural-sql-7b")
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ "chatdb/natural-sql-7b",
43
+ device_map="auto",
44
+ torch_dtype=torch.float16,
45
+ )
46
+ ```
47
+
48
+ ### **License**
49
+
50
+ The model weights are licensed under `CC BY-SA 4.0`, with extra guidelines for responsible use.
51
+ Essentially, you're free to use and adapt the model, even commercially.
52
+ If you alter the weights, such as through fine-tuning, you must publicly share your changes under the same `CC BY-SA 4.0` license.
53
+
54
+
55
+ ### Generating SQL
56
+
57
+ ```python
58
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
59
+ generated_ids = model.generate(
60
+ **inputs,
61
+ num_return_sequences=1,
62
+ eos_token_id=100001,
63
+ pad_token_id=100001,
64
+ max_new_tokens=400,
65
+ do_sample=False,
66
+ num_beams=1,
67
+ )
68
+
69
+ outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
70
+ print(outputs[0].split("```sql")[-1])
71
+ ```
72
+ # Prompt Template
73
+
74
+ ```
75
+ # Task
76
+ Generate a SQL query to answer the following question: `{natural language question}`
77
+
78
+ ### PostgreSQL Database Schema
79
+ The query will run on a database with the following schema:
80
+
81
+ <SQL Table DDL Statements>
82
+
83
+ # SQL
84
+ Here is the SQL query that answers the question: `{natural language question}`
85
+ '''sql
86
+ ```
87
+
88
+
89
+ # Example SQL Output
90
+
91
+ ### Example Schemas
92
+
93
+ ```sql
94
+ CREATE TABLE users (
95
+ user_id SERIAL PRIMARY KEY,
96
+ username VARCHAR(50) NOT NULL,
97
+ email VARCHAR(100) NOT NULL,
98
+ password_hash TEXT NOT NULL,
99
+ created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
100
+ );
101
+ CREATE TABLE projects (
102
+ project_id SERIAL PRIMARY KEY,
103
+ project_name VARCHAR(100) NOT NULL,
104
+ description TEXT,
105
+ start_date DATE,
106
+ end_date DATE,
107
+ owner_id INTEGER REFERENCES users(user_id)
108
+ );
109
+ CREATE TABLE tasks (
110
+ task_id SERIAL PRIMARY KEY,
111
+ task_name VARCHAR(100) NOT NULL,
112
+ description TEXT,
113
+ due_date DATE,
114
+ status VARCHAR(50),
115
+ project_id INTEGER REFERENCES projects(project_id)
116
+ );
117
+ CREATE TABLE taskassignments (
118
+ assignment_id SERIAL PRIMARY KEY,
119
+ task_id INTEGER REFERENCES tasks(task_id),
120
+ user_id INTEGER REFERENCES users(user_id),
121
+ assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP
122
+ );
123
+ CREATE TABLE comments (
124
+ comment_id SERIAL PRIMARY KEY,
125
+ content TEXT NOT NULL,
126
+ created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
127
+ task_id INTEGER REFERENCES tasks(task_id),
128
+ user_id INTEGER REFERENCES users(user_id)
129
+ );
130
+ ```
131
+ ### Example SQL Outputs
132
+
133
+ **Question**: **Show me the day with the most users joining**
134
+ ```sql
135
+ SELECT created_at::DATE AS day, COUNT(*) AS user_count
136
+ FROM users
137
+ GROUP BY day
138
+ ORDER BY user_count DESC
139
+ LIMIT 1;
140
+ ```
141
+ **Question**: **Show me the project that has a task with the most comments**
142
+ ```sql
143
+ SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count
144
+ FROM projects p
145
+ JOIN tasks t ON p.project_id = t.project_id
146
+ JOIN comments c ON t.task_id = c.task_id
147
+ GROUP BY p.project_name, t.task_name
148
+ ORDER BY comment_count DESC
149
+ LIMIT 1;
150
+ ```
151
+
152
+ **Question**: **What is the ratio of users with gmail addresses vs without?**
153
+ ```sql
154
+ SELECT
155
+ SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio
156
+ FROM
157
+ users;
158
+ ```