chrisvoncsefalvay commited on
Commit
4ae2196
1 Parent(s): cf59ca5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -3
README.md CHANGED
@@ -76,10 +76,23 @@ model-index:
76
  type: vaers-outcomes
77
  name: vaers-outcomes
78
  metrics:
79
- - name: accuracy
80
- type: accuracy
81
  value: 0.885
82
  verified: false
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  ---
84
 
85
  # DAEDRA: Determining Adverse Event Disposition for Regulatory Affairs
@@ -107,7 +120,11 @@ This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https:/
107
  ## Model Description
108
 
109
  <!-- Provide a longer summary of what this model is/does. -->
110
- Some cool model...
 
 
 
 
111
 
112
  - **Developed by:** Chris von Csefalvay
113
  - **Model type:** Language model
@@ -124,7 +141,14 @@ This model was designed to facilitate the coding of passive adverse event report
124
 
125
  ## Direct Use
126
 
 
 
 
 
127
 
 
 
 
128
 
129
 
130
  ## Out-of-Scope Use
 
76
  type: vaers-outcomes
77
  name: vaers-outcomes
78
  metrics:
79
+ - name: Accuracy, microaveraged
80
+ type: accuracy_microaverage
81
  value: 0.885
82
  verified: false
83
+ - name: F1 score, microaveraged
84
+ type: f1_microaverage
85
+ value: 0.885
86
+ verified: false
87
+ - name: Precision, macroaveraged
88
+ type: precision_macroaverage
89
+ value: 0.769
90
+ verified: false
91
+ - name: Recall, macroaveraged
92
+ type: recall_macroaverage
93
+ value: 0.688
94
+ verified: false
95
+
96
  ---
97
 
98
  # DAEDRA: Determining Adverse Event Disposition for Regulatory Affairs
 
120
  ## Model Description
121
 
122
  <!-- Provide a longer summary of what this model is/does. -->
123
+
124
+ DAEDRA is a model for the identification of adverse event dispositions (outcomes) from passive pharmacovigilance data.
125
+ The model is trained on a real-world adversomics data set spanning over three decades (1990-2023) and comprising over 1.8m records for a total corpus of 173,093,850 words constructed from a subset of reports submitted to VAERS.
126
+ It is intended to identify, based on the narrative, whether any, or any combination, of three serious outcomes -- death, hospitalisation and ER attendance -- have occurred.
127
+
128
 
129
  - **Developed by:** Chris von Csefalvay
130
  - **Model type:** Language model
 
141
 
142
  ## Direct Use
143
 
144
+ Load the model via the `transformers` library:
145
+
146
+ ```
147
+ from transformers import AutoTokenizer, AutoModel
148
 
149
+ tokenizer = AutoTokenizer.from_pretrained("chrisvoncsefalvay/daedra")
150
+ model = AutoModel.from_pretrained("chrisvoncsefalvay/daedra")
151
+ ```
152
 
153
 
154
  ## Out-of-Scope Use