chrisvoncsefalvay
commited on
Commit
•
bdfdc87
1
Parent(s):
5c0fa20
Upload tokenizer
Browse files- README.md +7 -7
- tokenizer.json +0 -9
- tokenizer_config.json +0 -8
README.md
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
datasets:
|
4 |
- chrisvoncsefalvay/vaers-outcomes
|
5 |
-
language:
|
6 |
-
- en
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
- f1
|
10 |
- precision
|
11 |
- recall
|
12 |
-
library_name: transformers
|
13 |
pipeline_tag: text-classification
|
14 |
-
tags:
|
15 |
-
- medical
|
16 |
-
- pharmacovigilance
|
17 |
-
- vaccines
|
18 |
---
|
19 |
|
20 |
DAEDRA (Detecting Adverse Event Dispositions for Regulatory Affairs) is a pharmacovigilance language model intended to facilitate the rapid identification and extraction of high-consequence outcomes from passive pharmacovigilance reporting. It was trained on the VAERS data set, and focuses on three main outcomes:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: apache-2.0
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- medical
|
8 |
+
- pharmacovigilance
|
9 |
+
- vaccines
|
10 |
datasets:
|
11 |
- chrisvoncsefalvay/vaers-outcomes
|
|
|
|
|
12 |
metrics:
|
13 |
- accuracy
|
14 |
- f1
|
15 |
- precision
|
16 |
- recall
|
|
|
17 |
pipeline_tag: text-classification
|
|
|
|
|
|
|
|
|
18 |
---
|
19 |
|
20 |
DAEDRA (Detecting Adverse Event Dispositions for Regulatory Affairs) is a pharmacovigilance language model intended to facilitate the rapid identification and extraction of high-consequence outcomes from passive pharmacovigilance reporting. It was trained on the VAERS data set, and focuses on three main outcomes:
|
tokenizer.json
CHANGED
@@ -52,15 +52,6 @@
|
|
52 |
"rstrip": false,
|
53 |
"normalized": false,
|
54 |
"special": true
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"id": 30522,
|
58 |
-
"content": "Pfizer",
|
59 |
-
"single_word": false,
|
60 |
-
"lstrip": false,
|
61 |
-
"rstrip": false,
|
62 |
-
"normalized": true,
|
63 |
-
"special": false
|
64 |
}
|
65 |
],
|
66 |
"normalizer": {
|
|
|
52 |
"rstrip": false,
|
53 |
"normalized": false,
|
54 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
}
|
56 |
],
|
57 |
"normalizer": {
|
tokenizer_config.json
CHANGED
@@ -39,14 +39,6 @@
|
|
39 |
"rstrip": false,
|
40 |
"single_word": false,
|
41 |
"special": true
|
42 |
-
},
|
43 |
-
"30522": {
|
44 |
-
"content": "Pfizer",
|
45 |
-
"lstrip": false,
|
46 |
-
"normalized": true,
|
47 |
-
"rstrip": false,
|
48 |
-
"single_word": false,
|
49 |
-
"special": false
|
50 |
}
|
51 |
},
|
52 |
"clean_up_tokenization_spaces": true,
|
|
|
39 |
"rstrip": false,
|
40 |
"single_word": false,
|
41 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
}
|
43 |
},
|
44 |
"clean_up_tokenization_spaces": true,
|