chrisvoncsefalvay commited on
Commit
bdfdc87
1 Parent(s): 5c0fa20

Upload tokenizer

Browse files
Files changed (3) hide show
  1. README.md +7 -7
  2. tokenizer.json +0 -9
  3. tokenizer_config.json +0 -8
README.md CHANGED
@@ -1,20 +1,20 @@
1
  ---
 
 
2
  license: apache-2.0
 
 
 
 
 
3
  datasets:
4
  - chrisvoncsefalvay/vaers-outcomes
5
- language:
6
- - en
7
  metrics:
8
  - accuracy
9
  - f1
10
  - precision
11
  - recall
12
- library_name: transformers
13
  pipeline_tag: text-classification
14
- tags:
15
- - medical
16
- - pharmacovigilance
17
- - vaccines
18
  ---
19
 
20
  DAEDRA (Detecting Adverse Event Dispositions for Regulatory Affairs) is a pharmacovigilance language model intended to facilitate the rapid identification and extraction of high-consequence outcomes from passive pharmacovigilance reporting. It was trained on the VAERS data set, and focuses on three main outcomes:
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - medical
8
+ - pharmacovigilance
9
+ - vaccines
10
  datasets:
11
  - chrisvoncsefalvay/vaers-outcomes
 
 
12
  metrics:
13
  - accuracy
14
  - f1
15
  - precision
16
  - recall
 
17
  pipeline_tag: text-classification
 
 
 
 
18
  ---
19
 
20
  DAEDRA (Detecting Adverse Event Dispositions for Regulatory Affairs) is a pharmacovigilance language model intended to facilitate the rapid identification and extraction of high-consequence outcomes from passive pharmacovigilance reporting. It was trained on the VAERS data set, and focuses on three main outcomes:
tokenizer.json CHANGED
@@ -52,15 +52,6 @@
52
  "rstrip": false,
53
  "normalized": false,
54
  "special": true
55
- },
56
- {
57
- "id": 30522,
58
- "content": "Pfizer",
59
- "single_word": false,
60
- "lstrip": false,
61
- "rstrip": false,
62
- "normalized": true,
63
- "special": false
64
  }
65
  ],
66
  "normalizer": {
 
52
  "rstrip": false,
53
  "normalized": false,
54
  "special": true
 
 
 
 
 
 
 
 
 
55
  }
56
  ],
57
  "normalizer": {
tokenizer_config.json CHANGED
@@ -39,14 +39,6 @@
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
- },
43
- "30522": {
44
- "content": "Pfizer",
45
- "lstrip": false,
46
- "normalized": true,
47
- "rstrip": false,
48
- "single_word": false,
49
- "special": false
50
  }
51
  },
52
  "clean_up_tokenization_spaces": true,
 
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
 
 
 
 
 
 
 
 
42
  }
43
  },
44
  "clean_up_tokenization_spaces": true,