{ "cells": [ { "cell_type": "markdown", "source": [ "# DAEDRA: Determining Adverse Event Disposition for Regulatory Affairs\n", "\n", "DAEDRA is a language model intended to predict the disposition (outcome) of an adverse event based on the text of the event report. Intended to be used to classify reports in passive reporting systems, it is trained on the [VAERS](https://vaers.hhs.gov/) dataset, which contains reports of adverse events following vaccination in the United States." ], "metadata": {} }, { "cell_type": "code", "source": [ "%pip install accelerate -U" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": "Requirement already satisfied: accelerate in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.26.1)\nRequirement already satisfied: pyyaml in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (6.0)\nRequirement already satisfied: torch>=1.10.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (1.12.0)\nRequirement already satisfied: safetensors>=0.3.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (0.4.2)\nRequirement already satisfied: numpy>=1.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (1.23.5)\nRequirement already satisfied: psutil in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (5.9.5)\nRequirement already satisfied: huggingface-hub in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (0.20.3)\nRequirement already satisfied: packaging>=20.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (23.1)\nRequirement already satisfied: typing_extensions in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (4.6.3)\nRequirement already satisfied: requests in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (2.31.0)\nRequirement already satisfied: filelock in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (3.13.1)\nRequirement already satisfied: tqdm>=4.42.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (4.65.0)\nRequirement already satisfied: fsspec>=2023.5.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (2023.10.0)\nRequirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (2023.5.7)\nRequirement already satisfied: idna<4,>=2.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (3.4)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (1.26.16)\nRequirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (3.1.0)\nNote: you may need to restart the kernel to use updated packages.\n" } ], "execution_count": 1, "metadata": { "nteract": { "transient": { "deleting": false } }, "tags": [], "gather": { "logged": 1706475754655 } } }, { "cell_type": "code", "source": [ "%pip install transformers datasets shap watermark wandb evaluate codecarbon" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": "Requirement already satisfied: transformers in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (4.37.1)\nRequirement already satisfied: datasets in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (2.16.1)\nRequirement already satisfied: shap in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.44.1)\nRequirement already satisfied: watermark in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (2.4.3)\nRequirement already satisfied: wandb in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.16.2)\nRequirement already satisfied: evaluate in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.4.1)\nRequirement already satisfied: codecarbon in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (2.3.3)\nRequirement already satisfied: safetensors>=0.3.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (0.4.2)\nRequirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (0.20.3)\nRequirement already satisfied: requests in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (2.31.0)\nRequirement already satisfied: tqdm>=4.27 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (4.65.0)\nRequirement already satisfied: numpy>=1.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (1.23.5)\nRequirement already satisfied: pyyaml>=5.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (6.0)\nRequirement already satisfied: filelock in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (3.13.1)\nRequirement already satisfied: packaging>=20.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (23.1)\nRequirement already satisfied: tokenizers<0.19,>=0.14 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (0.15.1)\nRequirement already satisfied: regex!=2019.12.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (2023.12.25)\nRequirement already satisfied: dill<0.3.8,>=0.3.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (0.3.7)\nRequirement already satisfied: xxhash in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (3.4.1)\nRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (2023.10.0)\nRequirement already satisfied: aiohttp in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (3.9.1)\nRequirement already satisfied: pyarrow-hotfix in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (0.6)\nRequirement already satisfied: multiprocess in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (0.70.15)\nRequirement already satisfied: pandas in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (2.0.2)\nRequirement already satisfied: pyarrow>=8.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (9.0.0)\nRequirement already satisfied: scipy in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (1.10.1)\nRequirement already satisfied: numba in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (0.58.1)\nRequirement already satisfied: slicer==0.0.7 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (0.0.7)\nRequirement already satisfied: scikit-learn in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (1.2.2)\nRequirement already satisfied: cloudpickle in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (2.2.1)\nRequirement already satisfied: setuptools in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from watermark) (65.6.3)\nRequirement already satisfied: importlib-metadata>=1.4 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from watermark) (6.7.0)\nRequirement already satisfied: ipython>=6.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from watermark) (8.12.2)\nRequirement already satisfied: psutil>=5.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (5.9.5)\nRequirement already satisfied: sentry-sdk>=1.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (1.39.2)\nRequirement already satisfied: appdirs>=1.4.3 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (1.4.4)\nRequirement already satisfied: setproctitle in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (1.3.3)\nRequirement already satisfied: Click!=8.0.0,>=7.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (8.1.3)\nRequirement already satisfied: typing-extensions in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (4.6.3)\nRequirement already satisfied: GitPython!=3.1.29,>=1.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (3.1.31)\nRequirement already satisfied: docker-pycreds>=0.4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (0.4.0)\nRequirement already satisfied: protobuf!=4.21.0,<5,>=3.12.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (3.19.6)\nRequirement already satisfied: responses<0.19 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from evaluate) (0.18.0)\nRequirement already satisfied: prometheus-client in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (0.19.0)\nRequirement already satisfied: py-cpuinfo in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (9.0.0)\nRequirement already satisfied: arrow in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (1.3.0)\nRequirement already satisfied: pynvml in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (11.5.0)\nRequirement already satisfied: rapidfuzz in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (3.6.1)\nRequirement already satisfied: six>=1.4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from docker-pycreds>=0.4.0->wandb) (1.16.0)\nRequirement already satisfied: multidict<7.0,>=4.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (6.0.4)\nRequirement already satisfied: aiosignal>=1.1.2 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (1.3.1)\nRequirement already satisfied: async-timeout<5.0,>=4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (4.0.3)\nRequirement already satisfied: frozenlist>=1.1.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (1.4.1)\nRequirement already satisfied: attrs>=17.3.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (23.1.0)\nRequirement already satisfied: yarl<2.0,>=1.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (1.9.4)\nRequirement already satisfied: gitdb<5,>=4.0.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from GitPython!=3.1.29,>=1.0.0->wandb) (4.0.10)\nRequirement already satisfied: zipp>=0.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from importlib-metadata>=1.4->watermark) (3.15.0)\nRequirement already satisfied: pygments>=2.4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (2.15.1)\nRequirement already satisfied: backcall in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.2.0)\nRequirement already satisfied: pickleshare in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.7.5)\nRequirement already satisfied: traitlets>=5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (5.9.0)\nRequirement already satisfied: matplotlib-inline in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.1.6)\nRequirement already satisfied: decorator in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (5.1.1)\nRequirement already satisfied: pexpect>4.3 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (4.8.0)\nRequirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (3.0.30)\nRequirement already satisfied: jedi>=0.16 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.18.2)\nRequirement already satisfied: stack-data in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.6.2)\nRequirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (3.1.0)\nRequirement already satisfied: idna<4,>=2.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (3.4)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (1.26.16)\nRequirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (2023.5.7)\nRequirement already satisfied: python-dateutil>=2.7.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from arrow->codecarbon) (2.8.2)\nRequirement already satisfied: types-python-dateutil>=2.8.10 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from arrow->codecarbon) (2.8.19.20240106)\nRequirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from numba->shap) (0.41.1)\nRequirement already satisfied: tzdata>=2022.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from pandas->datasets) (2023.3)\nRequirement already satisfied: pytz>=2020.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from pandas->datasets) (2023.3)\nRequirement already satisfied: joblib>=1.1.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from scikit-learn->shap) (1.2.0)\nRequirement already satisfied: threadpoolctl>=2.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from scikit-learn->shap) (3.1.0)\nRequirement already satisfied: smmap<6,>=3.0.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb) (5.0.0)\nRequirement already satisfied: parso<0.9.0,>=0.8.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from jedi>=0.16->ipython>=6.0->watermark) (0.8.3)\nRequirement already satisfied: ptyprocess>=0.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from pexpect>4.3->ipython>=6.0->watermark) (0.7.0)\nRequirement already satisfied: wcwidth in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.0->watermark) (0.2.6)\nRequirement already satisfied: asttokens>=2.1.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from stack-data->ipython>=6.0->watermark) (2.2.1)\nRequirement already satisfied: executing>=1.2.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from stack-data->ipython>=6.0->watermark) (1.2.0)\nRequirement already satisfied: pure-eval in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from stack-data->ipython>=6.0->watermark) (0.2.2)\nNote: you may need to restart the kernel to use updated packages.\n" } ], "execution_count": 2, "metadata": { "nteract": { "transient": { "deleting": false } } } }, { "cell_type": "code", "source": [ "import pandas as pd\n", "import numpy as np\n", "import torch\n", "import os\n", "from typing import List, Union\n", "from transformers import AutoTokenizer, Trainer, AutoModelForSequenceClassification, TrainingArguments, DataCollatorWithPadding, pipeline\n", "from datasets import load_dataset, Dataset, DatasetDict\n", "import shap\n", "import wandb\n", "import evaluate\n", "from codecarbon import EmissionsTracker\n", "\n", "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n", "tracker = EmissionsTracker()\n", "\n", "%load_ext watermark" ], "outputs": [ { "output_type": "stream", "name": "stderr", "text": "/anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n from .autonotebook import tqdm as notebook_tqdm\n2024-01-28 21:14:33.562898: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n2024-01-28 21:14:34.581816: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n2024-01-28 21:14:34.581943: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n2024-01-28 21:14:34.581956: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n[codecarbon INFO @ 21:14:37] [setup] RAM Tracking...\n[codecarbon INFO @ 21:14:37] [setup] GPU Tracking...\n[codecarbon INFO @ 21:14:37] Tracking Nvidia GPU via pynvml\n[codecarbon INFO @ 21:14:37] [setup] CPU Tracking...\n[codecarbon WARNING @ 21:14:37] No CPU tracking mode found. Falling back on CPU constant mode.\n[codecarbon WARNING @ 21:14:38] We saw that you have a Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz but we don't know it. Please contact us.\n[codecarbon INFO @ 21:14:38] CPU Model on constant consumption mode: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz\n[codecarbon INFO @ 21:14:38] >>> Tracker's metadata:\n[codecarbon INFO @ 21:14:38] Platform system: Linux-5.15.0-1040-azure-x86_64-with-glibc2.10\n[codecarbon INFO @ 21:14:38] Python version: 3.8.5\n[codecarbon INFO @ 21:14:38] CodeCarbon version: 2.3.3\n[codecarbon INFO @ 21:14:38] Available RAM : 440.883 GB\n[codecarbon INFO @ 21:14:38] CPU count: 24\n[codecarbon INFO @ 21:14:38] CPU model: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz\n[codecarbon INFO @ 21:14:38] GPU count: 4\n[codecarbon INFO @ 21:14:38] GPU model: 4 x Tesla V100-PCIE-16GB\n[codecarbon WARNING @ 21:14:38] Cloud provider 'azure' do not publish electricity carbon intensity. Using country value instead.\n" } ], "execution_count": 3, "metadata": { "datalore": { "hide_input_from_viewers": false, "hide_output_from_viewers": false, "node_id": "caZjjFP0OyQNMVgZDiwswE", "report_properties": { "rowId": "un8W7ez7ZwoGb5Co6nydEV" }, "type": "CODE" }, "gather": { "logged": 1706476478659 }, "tags": [] } }, { "cell_type": "code", "source": [ "device: str = 'cuda' if torch.cuda.is_available() else 'cpu'\n", "\n", "SEED: int = 42\n", "\n", "BATCH_SIZE: int = 32\n", "EPOCHS: int = 3\n", "model_ckpt: str = \"distilbert-base-uncased\"\n", "\n", "# WandB configuration\n", "os.environ[\"WANDB_PROJECT\"] = \"DAEDRA multiclass model training\" \n", "os.environ[\"WANDB_LOG_MODEL\"] = \"checkpoint\" # log all model checkpoints\n", "os.environ[\"WANDB_NOTEBOOK_NAME\"] = \"DAEDRA.ipynb\"" ], "outputs": [], "execution_count": 4, "metadata": { "collapsed": false, "gather": { "logged": 1706476478863 }, "jupyter": { "outputs_hidden": false } } }, { "cell_type": "code", "source": [ "%watermark --iversion" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": "shap : 0.44.1\nre : 2.2.1\ntorch : 1.12.0\nevaluate: 0.4.1\nwandb : 0.16.2\nlogging : 0.5.1.2\npandas : 2.0.2\nnumpy : 1.23.5\n\n" } ], "execution_count": 5, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } } }, { "cell_type": "code", "source": [ "!nvidia-smi" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": "Sun Jan 28 21:14:38 2024 \r\n+---------------------------------------------------------------------------------------+\r\n| NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.2 |\r\n|-----------------------------------------+----------------------+----------------------+\r\n| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\r\n| | | MIG M. |\r\n|=========================================+======================+======================|\r\n| 0 Tesla V100-PCIE-16GB Off | 00000001:00:00.0 Off | Off |\r\n| N/A 26C P0 25W / 250W | 4MiB / 16384MiB | 0% Default |\r\n| | | N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n| 1 Tesla V100-PCIE-16GB Off | 00000002:00:00.0 Off | Off |\r\n| N/A 25C P0 23W / 250W | 4MiB / 16384MiB | 0% Default |\r\n| | | N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n| 2 Tesla V100-PCIE-16GB Off | 00000003:00:00.0 Off | Off |\r\n| N/A 26C P0 25W / 250W | 4MiB / 16384MiB | 0% Default |\r\n| | | N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n| 3 Tesla V100-PCIE-16GB Off | 00000004:00:00.0 Off | Off |\r\n| N/A 27C P0 25W / 250W | 4MiB / 16384MiB | 0% Default |\r\n| | | N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n \r\n+---------------------------------------------------------------------------------------+\r\n| Processes: |\r\n| GPU GI CI PID Type Process name GPU Memory |\r\n| ID ID Usage |\r\n|=======================================================================================|\r\n| No running processes found |\r\n+---------------------------------------------------------------------------------------+\r\n" } ], "execution_count": 6, "metadata": { "datalore": { "hide_input_from_viewers": true, "hide_output_from_viewers": true, "node_id": "UU2oOJhwbIualogG1YyCMd", "type": "CODE" } } }, { "cell_type": "markdown", "source": [ "## Loading the data set" ], "metadata": { "datalore": { "hide_input_from_viewers": false, "hide_output_from_viewers": false, "node_id": "t45KHugmcPVaO0nuk8tGJ9", "report_properties": { "rowId": "40nN9Hvgi1clHNV5RAemI5" }, "type": "MD" } } }, { "cell_type": "code", "source": [ "dataset = load_dataset(\"chrisvoncsefalvay/vaers-outcomes\")" ], "outputs": [], "execution_count": 7, "metadata": { "collapsed": false, "gather": { "logged": 1706476480469 }, "jupyter": { "outputs_hidden": false } } }, { "cell_type": "code", "source": [ "dataset" ], "outputs": [ { "output_type": "execute_result", "execution_count": 8, "data": { "text/plain": "DatasetDict({\n train: Dataset({\n features: ['id', 'text', 'label'],\n num_rows: 1270444\n })\n test: Dataset({\n features: ['id', 'text', 'label'],\n num_rows: 272238\n })\n val: Dataset({\n features: ['id', 'text', 'label'],\n num_rows: 272238\n })\n})" }, "metadata": {} } ], "execution_count": 8, "metadata": { "collapsed": false, "gather": { "logged": 1706476480629 }, "jupyter": { "outputs_hidden": false, "source_hidden": false }, "nteract": { "transient": { "deleting": false } } } }, { "cell_type": "code", "source": [ "SUBSAMPLING = 0.5\n", "\n", "if SUBSAMPLING < 1:\n", " _ = DatasetDict()\n", " for each in dataset.keys():\n", " _[each] = dataset[each].shuffle(seed=SEED).select(range(int(len(dataset[each]) * SUBSAMPLING)))\n", "\n", " dataset = _" ], "outputs": [], "execution_count": 9, "metadata": { "gather": { "logged": 1706476480826 } } }, { "cell_type": "markdown", "source": [ "## Tokenisation and encoding" ], "metadata": {} }, { "cell_type": "code", "source": [ "def encode_ds(ds: Union[Dataset, DatasetDict], tokenizer_model: str = model_ckpt) -> Union[Dataset, DatasetDict]:\n", " return ds_enc" ], "outputs": [], "execution_count": 10, "metadata": { "gather": { "logged": 1706476480944 } } }, { "cell_type": "markdown", "source": [ "## Evaluation metrics" ], "metadata": {} }, { "cell_type": "code", "source": [ "accuracy = evaluate.load(\"accuracy\")\n", "precision, recall = evaluate.load(\"precision\"), evaluate.load(\"recall\")\n", "f1 = evaluate.load(\"f1\")" ], "outputs": [], "execution_count": 11, "metadata": { "gather": { "logged": 1706476481192 } } }, { "cell_type": "code", "source": [ "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=1)\n", " return {\n", " 'accuracy': accuracy.compute(predictions=predictions, references=labels)[\"accuracy\"],\n", " 'precision_macroaverage': precision.compute(predictions=predictions, references=labels, average='macro')[\"precision\"],\n", " 'precision_microaverage': precision.compute(predictions=predictions, references=labels, average='micro')[\"precision\"],\n", " 'recall_macroaverage': recall.compute(predictions=predictions, references=labels, average='macro')[\"recall\"],\n", " 'recall_microaverage': recall.compute(predictions=predictions, references=labels, average='micro')[\"recall\"],\n", " 'f1_microaverage': f1.compute(predictions=predictions, references=labels, average='micro')[\"f1\"]\n", " }" ], "outputs": [], "execution_count": 12, "metadata": { "gather": { "logged": 1706476481346 } } }, { "cell_type": "markdown", "source": [ "## Training" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "We specify a label map – this has to be done manually, even if `Datasets` has a function for it, as `AutoModelForSequenceClassification` requires an object with a length :(" ], "metadata": {} }, { "cell_type": "code", "source": [ "label_map = {i: label for i, label in enumerate(dataset[\"test\"].features[\"label\"].names)}" ], "outputs": [], "execution_count": 13, "metadata": { "gather": { "logged": 1706476481593 } } }, { "cell_type": "code", "source": [ "tokenizer = AutoTokenizer.from_pretrained(model_ckpt)\n", "\n", "cols = dataset[\"train\"].column_names\n", "cols.remove(\"label\")\n", "ds_enc = dataset.map(lambda x: tokenizer(x[\"text\"], truncation=True), batched=True, remove_columns=cols)\n", "\n", "model = AutoModelForSequenceClassification.from_pretrained(model_ckpt, \n", " num_labels=len(dataset[\"test\"].features[\"label\"].names), \n", " id2label=label_map, \n", " label2id={v:k for k,v in label_map.items()})\n", "\n", "args = TrainingArguments(\n", " output_dir=\"vaers\",\n", " evaluation_strategy=\"epoch\",\n", " save_strategy=\"epoch\",\n", " learning_rate=2e-5,\n", " per_device_train_batch_size=BATCH_SIZE,\n", " per_device_eval_batch_size=BATCH_SIZE,\n", " num_train_epochs=EPOCHS,\n", " weight_decay=.01,\n", " logging_steps=1,\n", " load_best_model_at_end=True,\n", " run_name=f\"daedra-training\",\n", " report_to=[\"wandb\"])\n", "\n", "trainer = Trainer(\n", " model=model,\n", " args=args,\n", " train_dataset=ds_enc[\"train\"],\n", " eval_dataset=ds_enc[\"test\"],\n", " tokenizer=tokenizer,\n", " compute_metrics=compute_metrics)" ], "outputs": [ { "output_type": "stream", "name": "stderr", "text": "Map: 100%|██████████| 635222/635222 [04:25<00:00, 2395.47 examples/s]\nMap: 100%|██████████| 136119/136119 [00:56<00:00, 2405.75 examples/s]\nMap: 100%|██████████| 136119/136119 [00:56<00:00, 2422.27 examples/s]\nSome weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" } ], "execution_count": 14, "metadata": { "gather": { "logged": 1706476861739 } } }, { "cell_type": "code", "source": [ "if SUBSAMPLING != 1.0:\n", " wandb_tag: List[str] = [f\"subsample-{SUBSAMPLING}\"]\n", "else:\n", " wandb_tag: List[str] = [f\"full_sample\"]\n", "\n", "wandb_tag.append(f\"batch_size-{BATCH_SIZE}\")\n", "wandb_tag.append(f\"base:{model_ckpt}\")\n", " \n", "wandb.init(name=\"daedra_training_run\", tags=wandb_tag, magic=True)" ], "outputs": [ { "output_type": "stream", "name": "stderr", "text": "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mchrisvoncsefalvay\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m wandb.init() arguments ignored because wandb magic has already been initialized\n" }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Tracking run with wandb version 0.16.2" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Run data is saved locally in /mnt/batch/tasks/shared/LS_root/mounts/clusters/daedra-hptrain-cvc/code/Users/kristof.csefalvay/daedra/notebooks/wandb/run-20240128_212103-403j5ij5" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Syncing run daedra_training_run to Weights & Biases (docs)
" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": " View project at https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": " View run at https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/403j5ij5" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Finishing last run (ID:403j5ij5) before initializing another..." }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": " View run daedra_training_run at: https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/403j5ij5
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Find logs at: ./wandb/run-20240128_212103-403j5ij5/logs" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Successfully finished last run (ID:403j5ij5). Initializing new run:
" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Tracking run with wandb version 0.16.2" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Run data is saved locally in /mnt/batch/tasks/shared/LS_root/mounts/clusters/daedra-hptrain-cvc/code/Users/kristof.csefalvay/daedra/notebooks/wandb/run-20240128_212105-q65k78ea" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "Syncing run daedra_training_run to Weights & Biases (docs)
" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": " View project at https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": " View run at https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/q65k78ea" }, "metadata": {} }, { "output_type": "execute_result", "execution_count": 15, "data": { "text/html": "", "text/plain": "" }, "metadata": {} } ], "execution_count": 15, "metadata": { "gather": { "logged": 1706476872191 } } }, { "cell_type": "code", "source": [ "tracker.start()\n", "trainer.train()\n", "tracker.stop()\n" ], "outputs": [ { "output_type": "stream", "name": "stderr", "text": "Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n" }, { "output_type": "display_data", "data": { "text/plain": "", "text/html": "\n
\n \n \n [ 2907/14889 31:21 < 2:09:21, 1.54 it/s, Epoch 0.59/3]\n
\n \n \n \n \n \n \n \n \n \n \n
EpochTraining LossValidation Loss

" }, "metadata": {} }, { "output_type": "stream", "name": "stderr", "text": "[codecarbon INFO @ 21:21:26] Energy consumed for RAM : 0.000690 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:21:26] Energy consumed for all GPUs : 0.001498 kWh. Total GPU Power : 359.01546838188807 W\n[codecarbon INFO @ 21:21:26] Energy consumed for all CPUs : 0.000177 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:21:26] 0.002365 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:21:41] Energy consumed for RAM : 0.001378 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:21:41] Energy consumed for all GPUs : 0.004065 kWh. Total GPU Power : 616.9146793770267 W\n[codecarbon INFO @ 21:21:41] Energy consumed for all CPUs : 0.000354 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:21:41] 0.005797 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:21:56] Energy consumed for RAM : 0.002066 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:21:56] Energy consumed for all GPUs : 0.006654 kWh. Total GPU Power : 621.6877665436252 W\n[codecarbon INFO @ 21:21:56] Energy consumed for all CPUs : 0.000532 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:21:56] 0.009251 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:22:11] Energy consumed for RAM : 0.002754 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:22:11] Energy consumed for all GPUs : 0.009260 kWh. Total GPU Power : 626.1437572465749 W\n[codecarbon INFO @ 21:22:11] Energy consumed for all CPUs : 0.000709 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:22:11] 0.012723 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:22:26] Energy consumed for RAM : 0.003443 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:22:26] Energy consumed for all GPUs : 0.011865 kWh. Total GPU Power : 625.3693802936192 W\n[codecarbon INFO @ 21:22:26] Energy consumed for all CPUs : 0.000886 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:22:26] 0.016193 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:22:41] Energy consumed for RAM : 0.004131 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:22:41] Energy consumed for all GPUs : 0.014488 kWh. Total GPU Power : 630.2419235639226 W\n[codecarbon INFO @ 21:22:41] Energy consumed for all CPUs : 0.001063 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:22:41] 0.019682 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:22:56] Energy consumed for RAM : 0.004819 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:22:56] Energy consumed for all GPUs : 0.017135 kWh. Total GPU Power : 635.8556506868297 W\n[codecarbon INFO @ 21:22:56] Energy consumed for all CPUs : 0.001240 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:22:56] 0.023194 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:23:11] Energy consumed for RAM : 0.005507 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:23:11] Energy consumed for all GPUs : 0.019738 kWh. Total GPU Power : 625.0758518089303 W\n[codecarbon INFO @ 21:23:11] Energy consumed for all CPUs : 0.001417 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:23:11] 0.026662 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:23:26] Energy consumed for RAM : 0.006195 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:23:26] Energy consumed for all GPUs : 0.022385 kWh. Total GPU Power : 636.0572579593729 W\n[codecarbon INFO @ 21:23:26] Energy consumed for all CPUs : 0.001594 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:23:26] 0.030175 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:23:41] Energy consumed for RAM : 0.006883 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:23:41] Energy consumed for all GPUs : 0.025031 kWh. Total GPU Power : 635.4132918961806 W\n[codecarbon INFO @ 21:23:41] Energy consumed for all CPUs : 0.001771 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:23:41] 0.033685 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:23:56] Energy consumed for RAM : 0.007572 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:23:56] Energy consumed for all GPUs : 0.027661 kWh. Total GPU Power : 631.8222916777424 W\n[codecarbon INFO @ 21:23:56] Energy consumed for all CPUs : 0.001948 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:23:56] 0.037180 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:24:11] Energy consumed for RAM : 0.008260 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:24:11] Energy consumed for all GPUs : 0.030315 kWh. Total GPU Power : 637.844758085687 W\n[codecarbon INFO @ 21:24:11] Energy consumed for all CPUs : 0.002125 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:24:11] 0.040701 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:24:26] Energy consumed for RAM : 0.008948 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:24:26] Energy consumed for all GPUs : 0.032970 kWh. Total GPU Power : 637.7063667069607 W\n[codecarbon INFO @ 21:24:26] Energy consumed for all CPUs : 0.002302 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:24:26] 0.044220 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:24:41] Energy consumed for RAM : 0.009636 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:24:41] Energy consumed for all GPUs : 0.035629 kWh. Total GPU Power : 638.7595521159491 W\n[codecarbon INFO @ 21:24:41] Energy consumed for all CPUs : 0.002479 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:24:41] 0.047744 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:24:56] Energy consumed for RAM : 0.010324 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:24:56] Energy consumed for all GPUs : 0.038234 kWh. Total GPU Power : 626.0118880295652 W\n[codecarbon INFO @ 21:24:56] Energy consumed for all CPUs : 0.002657 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:24:56] 0.051214 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:25:11] Energy consumed for RAM : 0.011012 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:25:11] Energy consumed for all GPUs : 0.040892 kWh. Total GPU Power : 638.4170631771941 W\n[codecarbon INFO @ 21:25:11] Energy consumed for all CPUs : 0.002834 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:25:11] 0.054738 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:25:26] Energy consumed for RAM : 0.011700 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:25:26] Energy consumed for all GPUs : 0.043524 kWh. Total GPU Power : 632.34394576946 W\n[codecarbon INFO @ 21:25:26] Energy consumed for all CPUs : 0.003011 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:25:26] 0.058235 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:25:41] Energy consumed for RAM : 0.012388 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:25:41] Energy consumed for all GPUs : 0.046182 kWh. Total GPU Power : 638.4662389546352 W\n[codecarbon INFO @ 21:25:41] Energy consumed for all CPUs : 0.003188 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:25:41] 0.061758 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:25:56] Energy consumed for RAM : 0.013076 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:25:56] Energy consumed for all GPUs : 0.048838 kWh. Total GPU Power : 638.0871021853263 W\n[codecarbon INFO @ 21:25:56] Energy consumed for all CPUs : 0.003365 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:25:56] 0.065279 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:26:11] Energy consumed for RAM : 0.013765 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:26:11] Energy consumed for all GPUs : 0.051499 kWh. Total GPU Power : 639.0983849678707 W\n[codecarbon INFO @ 21:26:11] Energy consumed for all CPUs : 0.003542 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:26:11] 0.068806 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:26:26] Energy consumed for RAM : 0.014453 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:26:26] Energy consumed for all GPUs : 0.054132 kWh. Total GPU Power : 632.549674567773 W\n[codecarbon INFO @ 21:26:26] Energy consumed for all CPUs : 0.003719 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:26:26] 0.072304 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:26:41] Energy consumed for RAM : 0.015141 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:26:41] Energy consumed for all GPUs : 0.056768 kWh. Total GPU Power : 633.3096652159345 W\n[codecarbon INFO @ 21:26:41] Energy consumed for all CPUs : 0.003896 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:26:41] 0.075804 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:26:56] Energy consumed for RAM : 0.015829 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:26:56] Energy consumed for all GPUs : 0.059404 kWh. Total GPU Power : 633.339846576491 W\n[codecarbon INFO @ 21:26:56] Energy consumed for all CPUs : 0.004073 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:26:56] 0.079306 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:27:11] Energy consumed for RAM : 0.016517 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:27:11] Energy consumed for all GPUs : 0.062068 kWh. Total GPU Power : 639.9100492849137 W\n[codecarbon INFO @ 21:27:11] Energy consumed for all CPUs : 0.004250 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:27:11] 0.082835 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:27:26] Energy consumed for RAM : 0.017205 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:27:26] Energy consumed for all GPUs : 0.064726 kWh. Total GPU Power : 638.6437092393893 W\n[codecarbon INFO @ 21:27:26] Energy consumed for all CPUs : 0.004427 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:27:26] 0.086359 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:27:41] Energy consumed for RAM : 0.017893 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:27:41] Energy consumed for all GPUs : 0.067388 kWh. Total GPU Power : 639.3487979354586 W\n[codecarbon INFO @ 21:27:41] Energy consumed for all CPUs : 0.004604 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:27:41] 0.089885 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:27:56] Energy consumed for RAM : 0.018581 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:27:56] Energy consumed for all GPUs : 0.070026 kWh. Total GPU Power : 633.6884387646057 W\n[codecarbon INFO @ 21:27:56] Energy consumed for all CPUs : 0.004781 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:27:56] 0.093389 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:28:11] Energy consumed for RAM : 0.019269 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:28:11] Energy consumed for all GPUs : 0.072687 kWh. Total GPU Power : 639.4422525221754 W\n[codecarbon INFO @ 21:28:11] Energy consumed for all CPUs : 0.004958 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:28:11] 0.096915 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:28:26] Energy consumed for RAM : 0.019958 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:28:26] Energy consumed for all GPUs : 0.075296 kWh. Total GPU Power : 626.9464464111006 W\n[codecarbon INFO @ 21:28:26] Energy consumed for all CPUs : 0.005135 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:28:26] 0.100390 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:28:41] Energy consumed for RAM : 0.020646 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:28:41] Energy consumed for all GPUs : 0.077962 kWh. Total GPU Power : 640.3962575270206 W\n[codecarbon INFO @ 21:28:41] Energy consumed for all CPUs : 0.005313 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:28:41] 0.103921 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:28:56] Energy consumed for RAM : 0.021334 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:28:56] Energy consumed for all GPUs : 0.080619 kWh. Total GPU Power : 638.3087387539953 W\n[codecarbon INFO @ 21:28:56] Energy consumed for all CPUs : 0.005490 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:28:56] 0.107443 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:29:11] Energy consumed for RAM : 0.022022 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:29:11] Energy consumed for all GPUs : 0.083270 kWh. Total GPU Power : 636.8708359764104 W\n[codecarbon INFO @ 21:29:11] Energy consumed for all CPUs : 0.005667 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:29:11] 0.110959 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:29:26] Energy consumed for RAM : 0.022710 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:29:26] Energy consumed for all GPUs : 0.085893 kWh. Total GPU Power : 630.0796388169725 W\n[codecarbon INFO @ 21:29:26] Energy consumed for all CPUs : 0.005844 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:29:26] 0.114447 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:29:41] Energy consumed for RAM : 0.023398 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:29:41] Energy consumed for all GPUs : 0.088548 kWh. Total GPU Power : 637.7758378447022 W\n[codecarbon INFO @ 21:29:41] Energy consumed for all CPUs : 0.006021 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:29:41] 0.117968 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:29:56] Energy consumed for RAM : 0.024087 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:29:56] Energy consumed for all GPUs : 0.091193 kWh. Total GPU Power : 634.8550146720521 W\n[codecarbon INFO @ 21:29:56] Energy consumed for all CPUs : 0.006198 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:29:56] 0.121478 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:30:11] Energy consumed for RAM : 0.024775 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:30:11] Energy consumed for all GPUs : 0.093817 kWh. Total GPU Power : 630.5186457226341 W\n[codecarbon INFO @ 21:30:11] Energy consumed for all CPUs : 0.006375 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:30:11] 0.124967 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:30:26] Energy consumed for RAM : 0.025463 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:30:26] Energy consumed for all GPUs : 0.096471 kWh. Total GPU Power : 637.5849420686613 W\n[codecarbon INFO @ 21:30:26] Energy consumed for all CPUs : 0.006552 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:30:26] 0.128486 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:30:41] Energy consumed for RAM : 0.026151 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:30:41] Energy consumed for all GPUs : 0.099109 kWh. Total GPU Power : 633.6189362439791 W\n[codecarbon INFO @ 21:30:41] Energy consumed for all CPUs : 0.006729 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:30:41] 0.131990 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:30:56] Energy consumed for RAM : 0.026839 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:30:56] Energy consumed for all GPUs : 0.101776 kWh. Total GPU Power : 640.6257944471723 W\n[codecarbon INFO @ 21:30:56] Energy consumed for all CPUs : 0.006906 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:30:56] 0.135522 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:31:11] Energy consumed for RAM : 0.027528 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:31:11] Energy consumed for all GPUs : 0.104439 kWh. Total GPU Power : 639.6643020904513 W\n[codecarbon INFO @ 21:31:11] Energy consumed for all CPUs : 0.007083 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:31:11] 0.139050 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:31:26] Energy consumed for RAM : 0.028216 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:31:26] Energy consumed for all GPUs : 0.107104 kWh. Total GPU Power : 640.0939172348444 W\n[codecarbon INFO @ 21:31:26] Energy consumed for all CPUs : 0.007260 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:31:26] 0.142580 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:31:41] Energy consumed for RAM : 0.028904 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:31:41] Energy consumed for all GPUs : 0.109747 kWh. Total GPU Power : 634.9935430223439 W\n[codecarbon INFO @ 21:31:41] Energy consumed for all CPUs : 0.007438 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:31:41] 0.146088 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:31:56] Energy consumed for RAM : 0.029592 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:31:56] Energy consumed for all GPUs : 0.112378 kWh. Total GPU Power : 632.1091666419065 W\n[codecarbon INFO @ 21:31:56] Energy consumed for all CPUs : 0.007615 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:31:56] 0.149585 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:32:11] Energy consumed for RAM : 0.030281 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:32:11] Energy consumed for all GPUs : 0.115023 kWh. Total GPU Power : 633.8442942682154 W\n[codecarbon INFO @ 21:32:11] Energy consumed for all CPUs : 0.007792 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:32:11] 0.153096 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:32:26] Energy consumed for RAM : 0.030968 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:32:26] Energy consumed for all GPUs : 0.117663 kWh. Total GPU Power : 635.0998743598051 W\n[codecarbon INFO @ 21:32:26] Energy consumed for all CPUs : 0.007969 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:32:26] 0.156599 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:32:41] Energy consumed for RAM : 0.031656 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:32:41] Energy consumed for all GPUs : 0.120332 kWh. Total GPU Power : 641.1040333084177 W\n[codecarbon INFO @ 21:32:41] Energy consumed for all CPUs : 0.008146 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:32:41] 0.160134 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:32:56] Energy consumed for RAM : 0.032344 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:32:56] Energy consumed for all GPUs : 0.122995 kWh. Total GPU Power : 639.7462391288783 W\n[codecarbon INFO @ 21:32:56] Energy consumed for all CPUs : 0.008323 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:32:56] 0.163662 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:33:11] Energy consumed for RAM : 0.033033 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:33:11] Energy consumed for all GPUs : 0.125648 kWh. Total GPU Power : 637.3370633888644 W\n[codecarbon INFO @ 21:33:11] Energy consumed for all CPUs : 0.008500 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:33:11] 0.167180 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:33:26] Energy consumed for RAM : 0.033721 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:33:26] Energy consumed for all GPUs : 0.128260 kWh. Total GPU Power : 627.497349520734 W\n[codecarbon INFO @ 21:33:26] Energy consumed for all CPUs : 0.008677 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:33:26] 0.170658 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:33:41] Energy consumed for RAM : 0.034409 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:33:41] Energy consumed for all GPUs : 0.130922 kWh. Total GPU Power : 639.378459827986 W\n[codecarbon INFO @ 21:33:41] Energy consumed for all CPUs : 0.008854 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:33:41] 0.174185 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:33:56] Energy consumed for RAM : 0.035097 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:33:56] Energy consumed for all GPUs : 0.133563 kWh. Total GPU Power : 634.2779963263187 W\n[codecarbon INFO @ 21:33:56] Energy consumed for all CPUs : 0.009031 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:33:56] 0.177692 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:34:11] Energy consumed for RAM : 0.035785 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:34:11] Energy consumed for all GPUs : 0.136211 kWh. Total GPU Power : 636.088462236655 W\n[codecarbon INFO @ 21:34:11] Energy consumed for all CPUs : 0.009208 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:34:11] 0.181205 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:34:26] Energy consumed for RAM : 0.036474 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:34:26] Energy consumed for all GPUs : 0.138875 kWh. Total GPU Power : 639.8420566736949 W\n[codecarbon INFO @ 21:34:26] Energy consumed for all CPUs : 0.009385 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:34:26] 0.184734 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:34:41] Energy consumed for RAM : 0.037162 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:34:41] Energy consumed for all GPUs : 0.141537 kWh. Total GPU Power : 639.4628459940732 W\n[codecarbon INFO @ 21:34:41] Energy consumed for all CPUs : 0.009563 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:34:41] 0.188261 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:34:56] Energy consumed for RAM : 0.037850 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:34:56] Energy consumed for all GPUs : 0.144193 kWh. Total GPU Power : 638.284138549091 W\n[codecarbon INFO @ 21:34:56] Energy consumed for all CPUs : 0.009740 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:34:56] 0.191782 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:35:11] Energy consumed for RAM : 0.038538 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:35:11] Energy consumed for all GPUs : 0.146807 kWh. Total GPU Power : 627.9721129851367 W\n[codecarbon INFO @ 21:35:11] Energy consumed for all CPUs : 0.009917 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:35:11] 0.195262 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:35:26] Energy consumed for RAM : 0.039226 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:35:26] Energy consumed for all GPUs : 0.149465 kWh. Total GPU Power : 638.5284782703005 W\n[codecarbon INFO @ 21:35:26] Energy consumed for all CPUs : 0.010094 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:35:26] 0.198785 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:35:41] Energy consumed for RAM : 0.039914 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:35:41] Energy consumed for all GPUs : 0.152101 kWh. Total GPU Power : 633.1180716439897 W\n[codecarbon INFO @ 21:35:41] Energy consumed for all CPUs : 0.010271 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:35:41] 0.202286 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:35:56] Energy consumed for RAM : 0.040602 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:35:56] Energy consumed for all GPUs : 0.154764 kWh. Total GPU Power : 640.0670545574203 W\n[codecarbon INFO @ 21:35:56] Energy consumed for all CPUs : 0.010448 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:35:56] 0.205814 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:36:11] Energy consumed for RAM : 0.041290 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:36:11] Energy consumed for all GPUs : 0.157432 kWh. Total GPU Power : 640.6751187111053 W\n[codecarbon INFO @ 21:36:11] Energy consumed for all CPUs : 0.010625 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:36:11] 0.209347 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:36:26] Energy consumed for RAM : 0.041979 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:36:26] Energy consumed for all GPUs : 0.160090 kWh. Total GPU Power : 638.5720494734854 W\n[codecarbon INFO @ 21:36:26] Energy consumed for all CPUs : 0.010802 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:36:26] 0.212871 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:36:41] Energy consumed for RAM : 0.042667 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:36:41] Energy consumed for all GPUs : 0.162737 kWh. Total GPU Power : 635.8084991485674 W\n[codecarbon INFO @ 21:36:41] Energy consumed for all CPUs : 0.010979 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:36:41] 0.216383 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:36:56] Energy consumed for RAM : 0.043355 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:36:56] Energy consumed for all GPUs : 0.165376 kWh. Total GPU Power : 634.1987011824029 W\n[codecarbon INFO @ 21:36:56] Energy consumed for all CPUs : 0.011156 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:36:56] 0.219886 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:37:11] Energy consumed for RAM : 0.044043 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:37:11] Energy consumed for all GPUs : 0.168015 kWh. Total GPU Power : 633.9887371766706 W\n[codecarbon INFO @ 21:37:11] Energy consumed for all CPUs : 0.011333 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:37:11] 0.223391 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:37:26] Energy consumed for RAM : 0.044731 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:37:26] Energy consumed for all GPUs : 0.170672 kWh. Total GPU Power : 638.6399487093975 W\n[codecarbon INFO @ 21:37:26] Energy consumed for all CPUs : 0.011510 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:37:26] 0.226913 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:37:41] Energy consumed for RAM : 0.045419 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:37:41] Energy consumed for all GPUs : 0.173330 kWh. Total GPU Power : 638.3717543169629 W\n[codecarbon INFO @ 21:37:41] Energy consumed for all CPUs : 0.011687 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:37:41] 0.230436 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:37:56] Energy consumed for RAM : 0.046107 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:37:56] Energy consumed for all GPUs : 0.175996 kWh. Total GPU Power : 640.4666251525215 W\n[codecarbon INFO @ 21:37:56] Energy consumed for all CPUs : 0.011864 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:37:56] 0.233967 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:38:11] Energy consumed for RAM : 0.046795 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:38:11] Energy consumed for all GPUs : 0.178655 kWh. Total GPU Power : 638.5808546734917 W\n[codecarbon INFO @ 21:38:11] Energy consumed for all CPUs : 0.012042 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:38:11] 0.237491 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:38:26] Energy consumed for RAM : 0.047483 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:38:26] Energy consumed for all GPUs : 0.181299 kWh. Total GPU Power : 635.2413118760992 W\n[codecarbon INFO @ 21:38:26] Energy consumed for all CPUs : 0.012219 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:38:26] 0.241001 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:38:41] Energy consumed for RAM : 0.048172 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:38:41] Energy consumed for all GPUs : 0.183936 kWh. Total GPU Power : 633.4649546198842 W\n[codecarbon INFO @ 21:38:41] Energy consumed for all CPUs : 0.012396 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:38:41] 0.244503 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:38:56] Energy consumed for RAM : 0.048860 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:38:56] Energy consumed for all GPUs : 0.186584 kWh. Total GPU Power : 636.131524414156 W\n[codecarbon INFO @ 21:38:56] Energy consumed for all CPUs : 0.012573 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:38:56] 0.248017 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:39:11] Energy consumed for RAM : 0.049548 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:39:11] Energy consumed for all GPUs : 0.189253 kWh. Total GPU Power : 641.2634282249857 W\n[codecarbon INFO @ 21:39:11] Energy consumed for all CPUs : 0.012750 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:39:11] 0.251551 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:39:26] Energy consumed for RAM : 0.050236 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:39:26] Energy consumed for all GPUs : 0.191926 kWh. Total GPU Power : 642.0441434380534 W\n[codecarbon INFO @ 21:39:26] Energy consumed for all CPUs : 0.012927 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:39:26] 0.255089 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:39:41] Energy consumed for RAM : 0.050924 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:39:41] Energy consumed for all GPUs : 0.194582 kWh. Total GPU Power : 637.9781331087586 W\n[codecarbon INFO @ 21:39:41] Energy consumed for all CPUs : 0.013104 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:39:41] 0.258610 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:39:56] Energy consumed for RAM : 0.051612 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:39:56] Energy consumed for all GPUs : 0.197230 kWh. Total GPU Power : 636.2697706727595 W\n[codecarbon INFO @ 21:39:56] Energy consumed for all CPUs : 0.013281 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:39:56] 0.262124 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:40:11] Energy consumed for RAM : 0.052300 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:40:11] Energy consumed for all GPUs : 0.199895 kWh. Total GPU Power : 640.3428775768339 W\n[codecarbon INFO @ 21:40:11] Energy consumed for all CPUs : 0.013458 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:40:11] 0.265654 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:40:26] Energy consumed for RAM : 0.052988 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:40:26] Energy consumed for all GPUs : 0.202515 kWh. Total GPU Power : 629.2766685535789 W\n[codecarbon INFO @ 21:40:26] Energy consumed for all CPUs : 0.013635 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:40:26] 0.269139 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:40:41] Energy consumed for RAM : 0.053677 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:40:41] Energy consumed for all GPUs : 0.205189 kWh. Total GPU Power : 642.1835694357527 W\n[codecarbon INFO @ 21:40:41] Energy consumed for all CPUs : 0.013812 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:40:41] 0.272678 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:40:56] Energy consumed for RAM : 0.054365 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:40:56] Energy consumed for all GPUs : 0.207849 kWh. Total GPU Power : 639.0512123347582 W\n[codecarbon INFO @ 21:40:56] Energy consumed for all CPUs : 0.013989 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:40:56] 0.276203 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:41:11] Energy consumed for RAM : 0.055053 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:41:11] Energy consumed for all GPUs : 0.210510 kWh. Total GPU Power : 639.2114833450486 W\n[codecarbon INFO @ 21:41:11] Energy consumed for all CPUs : 0.014166 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:41:11] 0.279729 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:41:26] Energy consumed for RAM : 0.055741 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:41:26] Energy consumed for all GPUs : 0.213150 kWh. Total GPU Power : 634.2127304940207 W\n[codecarbon INFO @ 21:41:26] Energy consumed for all CPUs : 0.014343 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:41:26] 0.283234 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:41:41] Energy consumed for RAM : 0.056429 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:41:41] Energy consumed for all GPUs : 0.215819 kWh. Total GPU Power : 641.2007745785662 W\n[codecarbon INFO @ 21:41:41] Energy consumed for all CPUs : 0.014521 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:41:41] 0.286769 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:41:56] Energy consumed for RAM : 0.057117 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:41:56] Energy consumed for all GPUs : 0.218486 kWh. Total GPU Power : 640.7227371900796 W\n[codecarbon INFO @ 21:41:56] Energy consumed for all CPUs : 0.014698 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:41:56] 0.290301 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:42:11] Energy consumed for RAM : 0.057806 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:42:11] Energy consumed for all GPUs : 0.221103 kWh. Total GPU Power : 628.6339716630874 W\n[codecarbon INFO @ 21:42:11] Energy consumed for all CPUs : 0.014875 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:42:11] 0.293783 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:42:26] Energy consumed for RAM : 0.058494 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:42:26] Energy consumed for all GPUs : 0.223767 kWh. Total GPU Power : 640.0746364068535 W\n[codecarbon INFO @ 21:42:26] Energy consumed for all CPUs : 0.015052 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:42:26] 0.297313 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:42:41] Energy consumed for RAM : 0.059182 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:42:41] Energy consumed for all GPUs : 0.226424 kWh. Total GPU Power : 638.2080824809826 W\n[codecarbon INFO @ 21:42:41] Energy consumed for all CPUs : 0.015229 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:42:41] 0.300835 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:42:56] Energy consumed for RAM : 0.059870 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:42:56] Energy consumed for all GPUs : 0.229064 kWh. Total GPU Power : 634.2533218929578 W\n[codecarbon INFO @ 21:42:56] Energy consumed for all CPUs : 0.015406 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:42:56] 0.304340 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:43:11] Energy consumed for RAM : 0.060558 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:43:11] Energy consumed for all GPUs : 0.231699 kWh. Total GPU Power : 632.8743496381484 W\n[codecarbon INFO @ 21:43:11] Energy consumed for all CPUs : 0.015583 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:43:11] 0.307840 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:43:26] Energy consumed for RAM : 0.061246 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:43:26] Energy consumed for all GPUs : 0.234369 kWh. Total GPU Power : 641.6283834036132 W\n[codecarbon INFO @ 21:43:26] Energy consumed for all CPUs : 0.015760 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:43:26] 0.311375 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:43:41] Energy consumed for RAM : 0.061934 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:43:41] Energy consumed for all GPUs : 0.237043 kWh. Total GPU Power : 642.3040649089497 W\n[codecarbon INFO @ 21:43:41] Energy consumed for all CPUs : 0.015937 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:43:41] 0.314915 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:43:56] Energy consumed for RAM : 0.062622 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:43:56] Energy consumed for all GPUs : 0.239655 kWh. Total GPU Power : 627.6126294000912 W\n[codecarbon INFO @ 21:43:56] Energy consumed for all CPUs : 0.016114 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:43:56] 0.318392 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:44:11] Energy consumed for RAM : 0.063311 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:44:11] Energy consumed for all GPUs : 0.242321 kWh. Total GPU Power : 640.4353576994267 W\n[codecarbon INFO @ 21:44:11] Energy consumed for all CPUs : 0.016291 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:44:11] 0.321923 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:44:26] Energy consumed for RAM : 0.063999 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:44:26] Energy consumed for all GPUs : 0.244988 kWh. Total GPU Power : 640.5277401792778 W\n[codecarbon INFO @ 21:44:26] Energy consumed for all CPUs : 0.016468 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:44:26] 0.325455 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:44:41] Energy consumed for RAM : 0.064687 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:44:41] Energy consumed for all GPUs : 0.247629 kWh. Total GPU Power : 634.3819968519699 W\n[codecarbon INFO @ 21:44:41] Energy consumed for all CPUs : 0.016645 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:44:41] 0.328961 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:44:56] Energy consumed for RAM : 0.065375 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:44:56] Energy consumed for all GPUs : 0.250281 kWh. Total GPU Power : 637.265582807383 W\n[codecarbon INFO @ 21:44:56] Energy consumed for all CPUs : 0.016823 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:44:56] 0.332479 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:45:11] Energy consumed for RAM : 0.066063 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:45:11] Energy consumed for all GPUs : 0.252945 kWh. Total GPU Power : 639.7317988572786 W\n[codecarbon INFO @ 21:45:11] Energy consumed for all CPUs : 0.017000 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:45:11] 0.336008 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:45:26] Energy consumed for RAM : 0.066751 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:45:26] Energy consumed for all GPUs : 0.255612 kWh. Total GPU Power : 640.7293994008817 W\n[codecarbon INFO @ 21:45:26] Energy consumed for all CPUs : 0.017177 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:45:26] 0.339540 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:45:41] Energy consumed for RAM : 0.067439 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:45:41] Energy consumed for all GPUs : 0.258225 kWh. Total GPU Power : 627.831662994067 W\n[codecarbon INFO @ 21:45:41] Energy consumed for all CPUs : 0.017354 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:45:41] 0.343018 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:45:56] Energy consumed for RAM : 0.068128 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:45:56] Energy consumed for all GPUs : 0.260886 kWh. Total GPU Power : 639.0834373322126 W\n[codecarbon INFO @ 21:45:56] Energy consumed for all CPUs : 0.017531 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:45:56] 0.346544 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:46:11] Energy consumed for RAM : 0.068816 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:46:11] Energy consumed for all GPUs : 0.263551 kWh. Total GPU Power : 640.21811942804 W\n[codecarbon INFO @ 21:46:11] Energy consumed for all CPUs : 0.017708 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:46:11] 0.350075 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:46:26] Energy consumed for RAM : 0.069504 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:46:26] Energy consumed for all GPUs : 0.266199 kWh. Total GPU Power : 635.36554464275 W\n[codecarbon INFO @ 21:46:26] Energy consumed for all CPUs : 0.017885 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:46:26] 0.353588 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:46:41] Energy consumed for RAM : 0.070192 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:46:41] Energy consumed for all GPUs : 0.268846 kWh. Total GPU Power : 636.3615954525276 W\n[codecarbon INFO @ 21:46:41] Energy consumed for all CPUs : 0.018062 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:46:41] 0.357099 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:46:56] Energy consumed for RAM : 0.070880 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:46:56] Energy consumed for all GPUs : 0.271505 kWh. Total GPU Power : 638.7791497333527 W\n[codecarbon INFO @ 21:46:56] Energy consumed for all CPUs : 0.018239 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:46:56] 0.360624 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:47:11] Energy consumed for RAM : 0.071568 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:47:11] Energy consumed for all GPUs : 0.274180 kWh. Total GPU Power : 642.4466497637459 W\n[codecarbon INFO @ 21:47:11] Energy consumed for all CPUs : 0.018416 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:47:11] 0.364164 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:47:26] Energy consumed for RAM : 0.072256 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:47:26] Energy consumed for all GPUs : 0.276794 kWh. Total GPU Power : 628.3190508121727 W\n[codecarbon INFO @ 21:47:26] Energy consumed for all CPUs : 0.018593 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:47:26] 0.367644 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:47:41] Energy consumed for RAM : 0.072944 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:47:41] Energy consumed for all GPUs : 0.279466 kWh. Total GPU Power : 641.8670593361426 W\n[codecarbon INFO @ 21:47:41] Energy consumed for all CPUs : 0.018770 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:47:41] 0.371181 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:47:56] Energy consumed for RAM : 0.073632 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:47:56] Energy consumed for all GPUs : 0.282137 kWh. Total GPU Power : 641.4703729656464 W\n[codecarbon INFO @ 21:47:56] Energy consumed for all CPUs : 0.018947 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:47:56] 0.374716 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:48:11] Energy consumed for RAM : 0.074321 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:48:11] Energy consumed for all GPUs : 0.284781 kWh. Total GPU Power : 635.1853195157872 W\n[codecarbon INFO @ 21:48:11] Energy consumed for all CPUs : 0.019125 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:48:11] 0.378226 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:48:26] Energy consumed for RAM : 0.075008 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:48:26] Energy consumed for all GPUs : 0.287442 kWh. Total GPU Power : 639.5462106369428 W\n[codecarbon INFO @ 21:48:26] Energy consumed for all CPUs : 0.019302 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:48:26] 0.381752 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:48:41] Energy consumed for RAM : 0.075697 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:48:41] Energy consumed for all GPUs : 0.290110 kWh. Total GPU Power : 640.8566755972051 W\n[codecarbon INFO @ 21:48:41] Energy consumed for all CPUs : 0.019479 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:48:41] 0.385285 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:48:56] Energy consumed for RAM : 0.076385 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:48:56] Energy consumed for all GPUs : 0.292782 kWh. Total GPU Power : 641.7052864666981 W\n[codecarbon INFO @ 21:48:56] Energy consumed for all CPUs : 0.019656 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:48:56] 0.388822 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:49:11] Energy consumed for RAM : 0.077073 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:49:11] Energy consumed for all GPUs : 0.295396 kWh. Total GPU Power : 628.327852773132 W\n[codecarbon INFO @ 21:49:11] Energy consumed for all CPUs : 0.019833 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:49:11] 0.392302 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:49:26] Energy consumed for RAM : 0.077761 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:49:26] Energy consumed for all GPUs : 0.298062 kWh. Total GPU Power : 640.3407136160951 W\n[codecarbon INFO @ 21:49:26] Energy consumed for all CPUs : 0.020010 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:49:26] 0.395833 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:49:41] Energy consumed for RAM : 0.078448 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:49:41] Energy consumed for all GPUs : 0.300704 kWh. Total GPU Power : 635.323287223873 W\n[codecarbon INFO @ 21:49:41] Energy consumed for all CPUs : 0.020187 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:49:41] 0.399339 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:49:56] Energy consumed for RAM : 0.079137 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:49:56] Energy consumed for all GPUs : 0.303364 kWh. Total GPU Power : 638.8823021398234 W\n[codecarbon INFO @ 21:49:56] Energy consumed for all CPUs : 0.020364 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:49:56] 0.402864 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:50:11] Energy consumed for RAM : 0.079825 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:50:11] Energy consumed for all GPUs : 0.306026 kWh. Total GPU Power : 639.5449269632837 W\n[codecarbon INFO @ 21:50:11] Energy consumed for all CPUs : 0.020541 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:50:11] 0.406392 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:50:26] Energy consumed for RAM : 0.080513 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:50:26] Energy consumed for all GPUs : 0.308696 kWh. Total GPU Power : 641.2978321880182 W\n[codecarbon INFO @ 21:50:26] Energy consumed for all CPUs : 0.020718 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:50:26] 0.409927 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:50:41] Energy consumed for RAM : 0.081201 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:50:41] Energy consumed for all GPUs : 0.311344 kWh. Total GPU Power : 636.0606478210286 W\n[codecarbon INFO @ 21:50:41] Energy consumed for all CPUs : 0.020895 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:50:41] 0.413440 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:50:56] Energy consumed for RAM : 0.081889 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:50:56] Energy consumed for all GPUs : 0.313981 kWh. Total GPU Power : 633.4763683114048 W\n[codecarbon INFO @ 21:50:56] Energy consumed for all CPUs : 0.021072 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:50:56] 0.416942 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:51:11] Energy consumed for RAM : 0.082577 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:51:11] Energy consumed for all GPUs : 0.316621 kWh. Total GPU Power : 634.3093356260223 W\n[codecarbon INFO @ 21:51:11] Energy consumed for all CPUs : 0.021249 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:51:11] 0.420447 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:51:26] Energy consumed for RAM : 0.083265 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:51:26] Energy consumed for all GPUs : 0.319275 kWh. Total GPU Power : 637.9102256749104 W\n[codecarbon INFO @ 21:51:26] Energy consumed for all CPUs : 0.021426 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:51:26] 0.423967 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:51:41] Energy consumed for RAM : 0.083953 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:51:41] Energy consumed for all GPUs : 0.321942 kWh. Total GPU Power : 640.7082551761707 W\n[codecarbon INFO @ 21:51:41] Energy consumed for all CPUs : 0.021603 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:51:41] 0.427499 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:51:56] Energy consumed for RAM : 0.084642 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:51:56] Energy consumed for all GPUs : 0.324609 kWh. Total GPU Power : 640.5186958631616 W\n[codecarbon INFO @ 21:51:56] Energy consumed for all CPUs : 0.021781 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:51:56] 0.431032 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:52:11] Energy consumed for RAM : 0.085330 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:52:11] Energy consumed for all GPUs : 0.327266 kWh. Total GPU Power : 638.3529279530002 W\n[codecarbon INFO @ 21:52:11] Energy consumed for all CPUs : 0.021958 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:52:11] 0.434553 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:52:26] Energy consumed for RAM : 0.086018 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:52:26] Energy consumed for all GPUs : 0.329910 kWh. Total GPU Power : 635.3762025182446 W\n[codecarbon INFO @ 21:52:26] Energy consumed for all CPUs : 0.022135 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:52:26] 0.438062 kWh of electricity used since the beginning.\n[codecarbon INFO @ 21:52:41] Energy consumed for RAM : 0.086706 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 21:52:41] Energy consumed for all GPUs : 0.332545 kWh. Total GPU Power : 632.9484218502305 W\n[codecarbon INFO @ 21:52:41] Energy consumed for all CPUs : 0.022312 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 21:52:41] 0.441563 kWh of electricity used since the beginning.\n" } ], "execution_count": 16, "metadata": { "gather": { "logged": 1706476228988 } } }, { "cell_type": "code", "source": [ "wandb.finish()" ], "outputs": [], "execution_count": null, "metadata": { "gather": { "logged": 1706476229030 } } }, { "cell_type": "code", "source": [ "variant = \"full_sample\" if SUBSAMPLING == 1.0 else f\"subsample-{SUBSAMPLING}\"\n", "tokenizer._tokenizer.save(\"tokenizer.json\")\n", "tokenizer.push_to_hub(\"chrisvoncsefalvay/daedra\")\n", "sample = \"full sample\" if SUBSAMPLING == 1.0 else f\"{SUBSAMPLING * 100}% of the full sample\"\n", "\n", "model.push_to_hub(\"chrisvoncsefalvay/daedra\", \n", " variant=variant,\n", " commit_message=f\"DAEDRA model trained on {sample} of the VAERS dataset (training set size: {dataset['train'].num_rows:,})\")" ], "outputs": [], "execution_count": null, "metadata": { "gather": { "logged": 1706476229038 } } } ], "metadata": { "datalore": { "base_environment": "default", "computation_mode": "JUPYTER", "package_manager": "pip", "packages": [ { "name": "datasets", "source": "PIP", "version": "2.16.1" }, { "name": "torch", "source": "PIP", "version": "2.1.2" }, { "name": "accelerate", "source": "PIP", "version": "0.26.1" } ], "report_row_ids": [ "un8W7ez7ZwoGb5Co6nydEV", "40nN9Hvgi1clHNV5RAemI5", "TgRD90H5NSPpKS41OeXI1w", "ZOm5BfUs3h1EGLaUkBGeEB", "kOP0CZWNSk6vqE3wkPp7Vc", "W4PWcOu2O2pRaZyoE2W80h", "RolbOnQLIftk0vy9mIcz5M", "8OPhUgbaNJmOdiq5D3a6vK", "5Qrt3jSvSrpK6Ne1hS6shL", "hTq7nFUrovN5Ao4u6dIYWZ", "I8WNZLpJ1DVP2wiCW7YBIB", "SawhU3I9BewSE1XBPstpNJ", "80EtLEl2FIE4FqbWnUD3nT" ], "version": 3 }, "kernelspec": { "name": "python38-azureml-pt-tf", "language": "python", "display_name": "Python 3.8 - Pytorch and Tensorflow" }, "language_info": { "name": "python", "version": "3.8.5", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" }, "microsoft": { "host": { "AzureML": { "notebookHasBeenCompleted": true } }, "ms_spell_check": { "ms_spell_check_language": "en" } }, "nteract": { "version": "nteract-front-end@1.0.0" }, "kernel_info": { "name": "python38-azureml-pt-tf" } }, "nbformat": 4, "nbformat_minor": 4 }