--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - kde4 metrics: - rouge - sacrebleu model-index: - name: mt5_small_kde4_en_ko results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-ko split: train args: en-ko metrics: - name: Rouge1 type: rouge value: 0.0832 - name: Sacrebleu type: sacrebleu value: 3.3559 --- # mt5_small_kde4_en_ko This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 3.1644 - Rouge1: 0.0832 - Rouge2: 0.0195 - Rougel: 0.0826 - Sacrebleu: 3.3559 ## Model description This model tries to achieve translation from English to Korean using google's mt5 multilingual model. ## Intended uses & limitations Translation from English to Korean ## Usage You can use this model directly with a pipeline for translation language modeling: ```python >>> from transformers import pipeline >>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko') >>> translator("Let us go for a walk after lunch.") [{'translation_text': '오류를 방문하십시오.'}] The translation fails completely. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 15.8735 | 0.46 | 500 | 6.5322 | 0.0101 | 0.0004 | 0.0102 | 0.464 | | 7.183 | 0.93 | 1000 | 4.2298 | 0.0203 | 0.0012 | 0.02 | 0.6102 | | 5.4447 | 1.39 | 1500 | 3.5600 | 0.0399 | 0.005 | 0.0396 | 1.5798 | | 4.8372 | 1.85 | 2000 | 3.3343 | 0.0537 | 0.0088 | 0.0533 | 3.0115 | | 4.5579 | 2.32 | 2500 | 3.2131 | 0.0732 | 0.016 | 0.0729 | 3.3743 | | 4.4532 | 2.78 | 3000 | 3.1644 | 0.0832 | 0.0195 | 0.0826 | 3.3559 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3