Upload 8 files
Browse files- README.md +189 -3
- adapter_config.json +31 -0
- adapter_model.safetensors +3 -0
- config.json +26 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
README.md
CHANGED
@@ -1,3 +1,189 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- alignment-handbook
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
- generated_from_trainer
|
9 |
+
base_model: mistralai/Mistral-7B-v0.1
|
10 |
+
model-index:
|
11 |
+
- name: Cimphony-Mistral-Law-7B
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
type: text-generation
|
15 |
+
dataset:
|
16 |
+
type: cais/mmlu
|
17 |
+
name: MMLU
|
18 |
+
metrics:
|
19 |
+
- name: International Law
|
20 |
+
type: accuracy
|
21 |
+
value: 0.802
|
22 |
+
verified: false
|
23 |
+
- task:
|
24 |
+
type: text-generation
|
25 |
+
dataset:
|
26 |
+
type: cais/mmlu
|
27 |
+
name: MMLU
|
28 |
+
metrics:
|
29 |
+
- name: Jurisprudence
|
30 |
+
type: accuracy
|
31 |
+
value: 0.704
|
32 |
+
verified: false
|
33 |
+
- task:
|
34 |
+
type: text-generation
|
35 |
+
dataset:
|
36 |
+
type: cais/mmlu
|
37 |
+
name: MMLU
|
38 |
+
metrics:
|
39 |
+
- name: Professional Law
|
40 |
+
type: accuracy
|
41 |
+
value: 0.416
|
42 |
+
verified: false
|
43 |
+
- task:
|
44 |
+
type: text-generation
|
45 |
+
dataset:
|
46 |
+
type: coastalcph/lex_glue
|
47 |
+
name: LexGLUE
|
48 |
+
metrics:
|
49 |
+
- name: ECtHR A
|
50 |
+
type: balanced accuracy
|
51 |
+
value: 0.631
|
52 |
+
verified: false
|
53 |
+
- task:
|
54 |
+
type: text-generation
|
55 |
+
dataset:
|
56 |
+
type: coastalcph/lex_glue
|
57 |
+
name: LexGLUE
|
58 |
+
metrics:
|
59 |
+
- name: LEDGAR
|
60 |
+
type: balanced accuracy
|
61 |
+
value: 0.741
|
62 |
+
verified: false
|
63 |
+
- task:
|
64 |
+
type: text-generation
|
65 |
+
dataset:
|
66 |
+
type: coastalcph/lex_glue
|
67 |
+
name: LexGLUE
|
68 |
+
metrics:
|
69 |
+
- name: CaseHOLD
|
70 |
+
type: accuracy
|
71 |
+
value: 0.776
|
72 |
+
verified: false
|
73 |
+
- task:
|
74 |
+
type: text-generation
|
75 |
+
dataset:
|
76 |
+
type: coastalcph/lex_glue
|
77 |
+
name: LexGLUE
|
78 |
+
metrics:
|
79 |
+
- name: Unfair-ToS
|
80 |
+
type: balanced accuracy
|
81 |
+
value: 0.809
|
82 |
+
verified: false
|
83 |
+
|
84 |
+
pipeline_tag: text-generation
|
85 |
+
---
|
86 |
+
|
87 |
+
# Cimphony-Mistral-Law-7B
|
88 |
+
|
89 |
+
We introduce Cimphony-Mistral-Law-7B, a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
|
90 |
+
|
91 |
+
Cimphony’s LLMs present state-of-the-art performance on legal benchmarks, suppressing models trained on a much larger corpus with significantly more resources, and in some cases even GPT-4, OpenAI’s flagship model.
|
92 |
+
|
93 |
+
![image/png](https://assets-global.website-files.com/64bde220a9b6312524909e4f/654a74e810c7aa04e73056c6_PNG-Final%20File-Logo-Cimphony-Vektora-Horizontal-01-p-500.png)
|
94 |
+
|
95 |
+
## Model description
|
96 |
+
|
97 |
+
The model was trained on 600M tokens. We use novel methods to expose the model to this corpus during training, blending a variety of legal reading comprehension tasks, as well as general language data.
|
98 |
+
|
99 |
+
|
100 |
+
## Legal Evaluation Results
|
101 |
+
|
102 |
+
We evaluate on the legal splits of the MMLU benchmark, as well as LexGLUE. While both are multiple option benchmarks, prompts were adapted so that the models output a single answer. In some cases, additional post-processing was required.
|
103 |
+
|
104 |
+
Benchmarks for which the labels were A-E multiple-choice options use an accuracy mertic. Benchmarks that have a closed list of options (e.g. Unfair-ToS) use a balanced-accuracy metric, as classes may not be balanced.
|
105 |
+
|
106 |
+
| Model / Benchmark | International Law (MMLU) | Jurisprudence (MMLU) | Professional law (MMLU) | ECtHR A (LexGlue) | LEDGAR (LexGlue) | CaseHOLD (LexGlue) | Unfair-ToS (LexGlue) |
|
107 |
+
|:-----------------------------------|:--------------------------|:----------------------|:-------------------------|:-------------------|:------------------|:--------------------|:-----------------------|
|
108 |
+
| Mistral-7B-Instruct-v0.2 | 73.6% | 69.4% | 41.2% | 67.5% | 50.6% | 56.3% | 36.6% |
|
109 |
+
| AdaptLLM | 57.0% | 52.8% | 36.1% | 51.9% | 46.3% | 50.0% | 51.3% |
|
110 |
+
| Saul-7B | 69.4% | 63.0% | **43.2%** | **71.2%** | 55.9% | 65.8% | 80.3% |
|
111 |
+
|<tr style="background-color:yellow;"><td>Cimphony-7B</td><td>**80.2%**</td><td>**70.4%**</td><td>41.6%</td><td>63.1%</td><td>**74.1%**</td><td>**77.6%**</td><td>**80.9%**</td></tr>|
|
112 |
+
|
113 |
+
## Training and evaluation data
|
114 |
+
|
115 |
+
Following the framework presented in [AdaptLLM](https://huggingface.co/AdaptLLM/law-chat), we convert the raw legal text into reading comprehension. Taking inspiration from human learning via reading comprehension - practice after reading improves the ability to answer questions based on the learned knowledge.
|
116 |
+
|
117 |
+
We developed a high-quality prompt database, considering the capabilities we’d like the model to possess. LLMs were prompt with the raw text and a collection of prompts, and it returned answers, additional questions, and transformations relevant to the input data. With further post-processing of these outputs, we created our legal reading comprehension dataset.
|
118 |
+
|
119 |
+
|
120 |
+
| Domain | Dataset | Tokens | License |
|
121 |
+
|:-------------------|:--------------------|:------:|:------------|
|
122 |
+
| Legal | The Pile (FreeLaw) | 180M | MIT |
|
123 |
+
| Legal | LexGlue | 108M | CC-BY-4.0 |
|
124 |
+
| Legal | USClassActions | 12M | GPL-3.0 |
|
125 |
+
| Math (CoT) | AQUA-RAT | 3M | Apache-2.0 |
|
126 |
+
| Commonsense (CoT) | ECQA | 2.4M | Apache-2.0 |
|
127 |
+
| Reasoning (CoT) | EntailmentBank | 1.8M | Apache-2.0 |
|
128 |
+
| Chat | UltraChat | 90M | MIT |
|
129 |
+
| Code | Code-Feedback | 36M | Apache-2.0 |
|
130 |
+
| Instruction | OpenOrca | 180M | MIT |
|
131 |
+
|
132 |
+
|
133 |
+
## Intended uses & limitations
|
134 |
+
|
135 |
+
This model can be used for use cases involving legal domain text generation.
|
136 |
+
|
137 |
+
As with any language model, users must not solely relay on model generations. This model has not gone through a human-feedback alignment (RLHF). The model may generate responses containing hallucinations and biases.
|
138 |
+
|
139 |
+
Example use:
|
140 |
+
```python
|
141 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
142 |
+
from peft import PeftModel
|
143 |
+
|
144 |
+
tokenizer = AutoTokenizer.from_pretrained("iarbel/mistral-law-7b-beta")
|
145 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
146 |
+
model = PeftModel.from_pretrained(model, "iarbel/mistral-law-7b-beta")
|
147 |
+
|
148 |
+
# Put your input here:
|
149 |
+
user_input = '''Question: What can you tell me about ex post facto laws?'''
|
150 |
+
|
151 |
+
# Apply the prompt template
|
152 |
+
prompt = tokenizer.apply_chat_template(user_input, tokenize=False)
|
153 |
+
|
154 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
|
155 |
+
outputs = model.generate(input_ids=inputs, max_length=4096)[0]
|
156 |
+
|
157 |
+
answer_start = int(inputs.shape[-1])
|
158 |
+
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
|
159 |
+
|
160 |
+
print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
|
161 |
+
```
|
162 |
+
|
163 |
+
## Training procedure
|
164 |
+
|
165 |
+
### Training hyperparameters
|
166 |
+
|
167 |
+
The following hyperparameters were used during training:
|
168 |
+
- learning_rate: 0.0005
|
169 |
+
- train_batch_size: 8
|
170 |
+
- eval_batch_size: 24
|
171 |
+
- seed: 42
|
172 |
+
- distributed_type: multi-GPU
|
173 |
+
- num_devices: 4
|
174 |
+
- gradient_accumulation_steps: 4
|
175 |
+
- total_train_batch_size: 128
|
176 |
+
- total_eval_batch_size: 96
|
177 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
178 |
+
- lr_scheduler_type: cosine
|
179 |
+
- lr_scheduler_warmup_ratio: 0.05
|
180 |
+
- num_epochs: 1
|
181 |
+
|
182 |
+
|
183 |
+
### Framework versions
|
184 |
+
|
185 |
+
- PEFT 0.8.2
|
186 |
+
- Transformers 4.37.2
|
187 |
+
- Pytorch 2.1.2+cu121
|
188 |
+
- Datasets 2.14.6
|
189 |
+
- Tokenizers 0.15.2
|
adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 64,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 64,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"v_proj",
|
23 |
+
"o_proj",
|
24 |
+
"q_proj",
|
25 |
+
"down_proj",
|
26 |
+
"k_proj",
|
27 |
+
"up_proj"
|
28 |
+
],
|
29 |
+
"task_type": "CAUSAL_LM",
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74ab9437033b622089e58b4cb3b83e59a4c7e3ca6693272696ba93923be598a8
|
3 |
+
size 260098992
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.37.2",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 4096,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|