File size: 5,189 Bytes
19fae3f
7b3bd29
 
19fae3f
 
 
 
 
 
 
 
7b3bd29
 
 
19fae3f
 
7b3bd29
19fae3f
 
 
 
 
 
 
 
 
 
 
7b3bd29
19fae3f
 
 
7b3bd29
 
 
19fae3f
7b3bd29
 
 
 
19fae3f
 
7b3bd29
 
cc00c00
19fae3f
7b3bd29
 
 
19fae3f
7b3bd29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a78e4af
19fae3f
 
 
7b3bd29
19fae3f
7b3bd29
 
 
 
 
 
 
 
 
 
19fae3f
7b3bd29
19fae3f
7b3bd29
 
 
 
 
 
19fae3f
 
 
 
7b3bd29
19fae3f
 
 
 
 
 
 
 
 
7b3bd29
19fae3f
 
7b3bd29
19fae3f
7b3bd29
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
language:
- ja
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: tohoku-nlp/bert-base-japanese-v3
widget: []
pipeline_tag: sentence-similarity
license: apache-2.0
datasets:
- cl-nagoya/ruri-dataset-ft
---

# Ruri: Japanese General Text Embeddings

## Usage

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
import torch.nn.functional as F
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cl-nagoya/ruri-pt-base")

# Don't forget to add the prefix "クエリ: " for query-side or "文章: " for passage-side texts.
sentences = [
    "クエリ: 瑠璃色はどんな色?",
    "文章: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
    "クエリ: ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
    "文章: ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
]

embeddings = model.encode(sentences, convert_to_tensor=True)
print(embeddings.size())
# [4, 768]

similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2)
print(similarities)
```

## Benchmarks

### JMTEB
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).

|Model|#Param.|Avg.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|[cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)|111M|68.56|49.64|82.05|73.47|91.83|51.79|62.57|
|[cl-nagoya/sup-simcse-ja-large](https://huggingface.co/cl-nagoya/sup-simcse-ja-large)|337M|66.51|37.62|83.18|73.73|91.48|50.56|62.51|
|[cl-nagoya/unsup-simcse-ja-base](https://huggingface.co/cl-nagoya/unsup-simcse-ja-base)|111M|65.07|40.23|78.72|73.07|91.16|44.77|62.44|
|[cl-nagoya/unsup-simcse-ja-large](https://huggingface.co/cl-nagoya/unsup-simcse-ja-large)|337M|66.27|40.53|80.56|74.66|90.95|48.41|62.49|
|[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|70.44|59.02|78.71|76.82|91.90|49.78|66.39|
||||||||||
|[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|64.70|40.12|76.56|72.66|91.63|44.88|62.33|
|[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|69.52|67.27|80.07|67.62|93.03|46.91|62.19|
|[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|70.12|68.21|79.84|69.30|92.85|48.26|62.26|
|[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|71.65|70.98|79.70|72.89|92.96|51.24|62.15|
||||||||||
|OpenAI/text-embedding-ada-002|-|69.48|64.38|79.02|69.75|93.04|48.30|62.40|
|OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27|
|OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35|
||||||||||
|[Ruri-Small](https://huggingface.co/cl-nagoya/ruri-small)|68M|71.53|69.41|82.79|76.22|93.00|51.19|62.11|
|[Ruri-Base](https://huggingface.co/cl-nagoya/ruri-base)|111M|71.91|69.82|82.87|75.58|92.91|54.16|62.38|
|[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.31|73.02|83.13|77.43|92.99|51.82|62.29|



## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [tohoku-nlp/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3) 
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768
- **Similarity Function:** Cosine Similarity
- **Language:** Japanese
- **License:** Apache 2.0
- **Paper:** https://arxiv.org/abs/2409.07737
<!-- - **Training Dataset:** Unknown -->

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```


## Training Details


### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu118
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

<!-- ## Citation

### BibTeX
 -->

## License
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).