miteshkotak7 commited on
Commit
6206d7d
1 Parent(s): 343a303

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ datasets:
4
+ - clareandme/multiLabelClassification
5
+ library_name: setfit
6
+ metrics:
7
+ - accuracy
8
+ pipeline_tag: text-classification
9
+ tags:
10
+ - setfit
11
+ - sentence-transformers
12
+ - text-classification
13
+ - generated_from_setfit_trainer
14
+ widget:
15
+ - text: The AI and user talk about how sleep problems are affecting the user's daily
16
+ life. The AI suggests improvements like sticking to a regular sleep schedule,
17
+ establishing a bedtime routine, and reducing screen time before bed. The user
18
+ acknowledges the challenge of implementing these changes but is willing to give
19
+ them a try for better sleep quality.
20
+ - text: The AI inquires about the user’s overall well-being and offers to talk about
21
+ managing work and study demands. The user reveals they’re feeling swamped by job
22
+ and exam pressures but find comfort in having a well-organized schedule.
23
+ - text: The AI and user talk about a recent falling out with a close friend who has
24
+ been giving them the cold shoulder. The user feels hurt and is uncertain about
25
+ the future of their friendship.
26
+ - text: The AI and user have a conversation about ways to manage and cope with the
27
+ loss of a loved partner.
28
+ - text: The AI engages the user in a conversation about their current challenges.
29
+ The user discloses that they’re feeling stressed and anxious due to financial
30
+ instability and rising debt.
31
+ inference: false
32
+ model-index:
33
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
34
+ results:
35
+ - task:
36
+ type: text-classification
37
+ name: Text Classification
38
+ dataset:
39
+ name: clareandme/multiLabelClassification
40
+ type: clareandme/multiLabelClassification
41
+ split: test
42
+ metrics:
43
+ - type: accuracy
44
+ value: 0.32142857142857145
45
+ name: Accuracy
46
+ ---
47
+
48
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
49
+
50
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [clareandme/multiLabelClassification](https://huggingface.co/datasets/clareandme/multiLabelClassification) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
51
+
52
+ The model has been trained using an efficient few-shot learning technique that involves:
53
+
54
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
55
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** SetFit
61
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
62
+ - **Classification head:** a MultiOutputClassifier instance
63
+ - **Maximum Sequence Length:** 512 tokens
64
+ <!-- - **Number of Classes:** Unknown -->
65
+ - **Training Dataset:** [clareandme/multiLabelClassification](https://huggingface.co/datasets/clareandme/multiLabelClassification)
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
72
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
73
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.3214 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("clareandme/multilabel-setfit-model-v3")
99
+ # Run inference
100
+ preds = model("The AI and user have a conversation about ways to manage and cope with the loss of a loved partner.")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 10 | 33.475 | 68 |
133
+
134
+ ### Training Hyperparameters
135
+ - batch_size: (16, 16)
136
+ - num_epochs: (4, 4)
137
+ - max_steps: -1
138
+ - sampling_strategy: oversampling
139
+ - num_iterations: 20
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: True
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:-------:|:-------:|:-------------:|:---------------:|
155
+ | 0.0033 | 1 | 0.1896 | - |
156
+ | 0.1667 | 50 | 0.2453 | - |
157
+ | 0.3333 | 100 | 0.1182 | - |
158
+ | 0.5 | 150 | 0.2458 | - |
159
+ | 0.6667 | 200 | 0.0401 | - |
160
+ | 0.8333 | 250 | 0.0763 | - |
161
+ | 1.0 | 300 | 0.0915 | 0.1302 |
162
+ | 1.1667 | 350 | 0.1105 | - |
163
+ | 1.3333 | 400 | 0.0715 | - |
164
+ | 1.5 | 450 | 0.126 | - |
165
+ | 1.6667 | 500 | 0.1074 | - |
166
+ | 1.8333 | 550 | 0.0781 | - |
167
+ | 2.0 | 600 | 0.0608 | 0.1102 |
168
+ | 2.1667 | 650 | 0.1246 | - |
169
+ | 2.3333 | 700 | 0.0791 | - |
170
+ | 2.5 | 750 | 0.0662 | - |
171
+ | 2.6667 | 800 | 0.0906 | - |
172
+ | 2.8333 | 850 | 0.0763 | - |
173
+ | **3.0** | **900** | **0.0656** | **0.1026** |
174
+ | 3.1667 | 950 | 0.0476 | - |
175
+ | 3.3333 | 1000 | 0.1086 | - |
176
+ | 3.5 | 1050 | 0.0903 | - |
177
+ | 3.6667 | 1100 | 0.0552 | - |
178
+ | 3.8333 | 1150 | 0.0335 | - |
179
+ | 4.0 | 1200 | 0.0689 | 0.1028 |
180
+
181
+ * The bold row denotes the saved checkpoint.
182
+ ### Framework Versions
183
+ - Python: 3.10.12
184
+ - SetFit: 1.0.3
185
+ - Sentence Transformers: 3.0.1
186
+ - Transformers: 4.39.0
187
+ - PyTorch: 2.3.1+cu121
188
+ - Datasets: 2.21.0
189
+ - Tokenizers: 0.15.2
190
+
191
+ ## Citation
192
+
193
+ ### BibTeX
194
+ ```bibtex
195
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
196
+ doi = {10.48550/ARXIV.2209.11055},
197
+ url = {https://arxiv.org/abs/2209.11055},
198
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
199
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
200
+ title = {Efficient Few-Shot Learning Without Prompts},
201
+ publisher = {arXiv},
202
+ year = {2022},
203
+ copyright = {Creative Commons Attribution 4.0 International}
204
+ }
205
+ ```
206
+
207
+ <!--
208
+ ## Glossary
209
+
210
+ *Clearly define terms in order to be accessible across audiences.*
211
+ -->
212
+
213
+ <!--
214
+ ## Model Card Authors
215
+
216
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
217
+ -->
218
+
219
+ <!--
220
+ ## Model Card Contact
221
+
222
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
223
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_900",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3906cfcf9e7446a7e65694478ff6357b8743377516d3eeed3d2bb7ca7bcd17f9
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6df2647f16ab1b5f7d96c641797eb41550956de99c71c612cb3993b9703f728
3
+ size 176993
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff