Corrected examples.
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ widget:
|
|
12 |
|
13 |
Ternary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data).
|
14 |
|
15 |
-
This classifier classifies text into only three categories: Negative, Neutral, and Positive. For the binary classifier (Negative, Other) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-bi).
|
16 |
|
17 |
For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929).
|
18 |
|
@@ -49,17 +49,17 @@ from simpletransformers.classification import ClassificationModel
|
|
49 |
model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-ter")
|
50 |
|
51 |
predictions, logits = model.predict([
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
]
|
56 |
)
|
57 |
|
58 |
predictions
|
59 |
-
# Output: array([
|
60 |
|
61 |
[model.config.id2label[i] for i in predictions]
|
62 |
-
# Output: ['
|
63 |
```
|
64 |
|
65 |
## Citation
|
|
|
12 |
|
13 |
Ternary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data).
|
14 |
|
15 |
+
This classifier classifies text into only three categories: Negative, Neutral, and Positive. For the binary classifier (Negative, Other) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-bi ).
|
16 |
|
17 |
For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929).
|
18 |
|
|
|
49 |
model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-ter")
|
50 |
|
51 |
predictions, logits = model.predict([
|
52 |
+
"Vi niste normalni",
|
53 |
+
"Đački autobusi moraju da voze svaki dan",
|
54 |
+
"Ovo je najbolji zakon na svetu",
|
55 |
]
|
56 |
)
|
57 |
|
58 |
predictions
|
59 |
+
# Output: array([0, 1, 2])
|
60 |
|
61 |
[model.config.id2label[i] for i in predictions]
|
62 |
+
# Output: ['Negative', 'Neutral', 'Positive']
|
63 |
```
|
64 |
|
65 |
## Citation
|