File size: 1,748 Bytes
1a84686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
metrics:
- type: mean_reward
value: -164.60 +/- 12.87
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **MountainCar-v0**
This is a trained model of a DQN agent playing MountainCar-v0.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_jax.py).
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/MountainCar-v0-dqn_jax-seed1/raw/main/dqn.py
curl -OL https://huggingface.co/cleanrl/MountainCar-v0-dqn_jax-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/MountainCar-v0-dqn_jax-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqn_jax.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id MountainCar-v0 --seed 1
```
# Hyperparameters
```python
{'batch_size': 128,
'buffer_size': 10000,
'capture_video': True,
'end_e': 0.05,
'env_id': 'MountainCar-v0',
'exp_name': 'dqn_jax',
'exploration_fraction': 0.5,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learning_rate': 0.00025,
'learning_starts': 10000,
'save_model': True,
'seed': 1,
'start_e': 1,
'target_network_frequency': 500,
'total_timesteps': 500000,
'track': True,
'train_frequency': 10,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|