File size: 2,252 Bytes
ec848cb cc66773 ec848cb cc66773 ec848cb cc66773 ec848cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
library_name: peft
license: llama3.1
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D30003
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/nicola-er-ho/clembench-playpen-sft/runs/ojtaq980)
# meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D30003
This model is a fine-tuned version of [unsloth/meta-llama-3.1-8b-instruct-bnb-4bit](https://huggingface.co/unsloth/meta-llama-3.1-8b-instruct-bnb-4bit) on the None dataset.
## Model description
This model was trained on Successful episodes of the top 3 model similar to [D20002](clembench-playpen/meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D20002) but instead of using the whole episode as input,
each episode was split into conversation pieces.
e.g.
```json
[
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
]
```
```json
is split int:
[
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
```
and
```json
[
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
]
```
## Training and evaluation data
After splitting, the dataset contains about 4122 conversation bits accross all games.
The Dataset ID is D30003
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 7331
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- lr_scheduler_warmup_steps: 5
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |