File size: 2,100 Bytes
9edba0e 1183b9c 949ff85 1183b9c 949ff85 1183b9c 949ff85 1183b9c 949ff85 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c 9edba0e 1183b9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language: en
tags:
- question-answering
- pytorch
- bert
- squad
license: mit
datasets:
- squad
pipeline_tag: question-answering
model-index:
- name: roberta-large-squad_epoch_3
results:
- task:
type: question-answering
name: Question Answering
metrics:
- type: exact_match
value: N/A # You can update this with actual metrics if available
name: Exact Match
- type: f1
value: N/A # You can update this with actual metrics if available
name: F1
dataset:
name: SQuAD
type: squad
config: plain_text # Adding the config field
split: validation # Adding the split field
---
# roberta-large-squad_epoch_3
## Model description
This is a fine-tuned version of [DistilBERT](https://huggingface.co/distilbert-base-cased-distilled-squad) for question answering tasks. The model was trained on SQuAD dataset.
## Training procedure
The model was trained with the following hyperparameters:
- Learning Rate: 5e-05
- Batch Size: 8
- Epochs: 3
- Weight Decay: 0.01
## Intended uses & limitations
This model is intended to be used for question answering tasks, particularly on SQuAD-like datasets. It performs best on factual questions where the answer can be found as a span of text within the given context.
## Training Details
### Training Data
The model was trained on the SQuAD dataset, which consists of questions posed by crowdworkers on a set of Wikipedia articles.
### Training Hyperparameters
The model was trained with the following hyperparameters:
* learning_rate: 5e-05
* batch_size: 8
* num_epochs: 3
* weight_decay: 0.01
## Uses
This model can be used for:
- Extracting answers from text passages given questions
- Question answering tasks
- Reading comprehension tasks
## Limitations
- The model can only extract answers that are directly present in the given context
- Performance may vary on out-of-domain texts
- The model may struggle with complex reasoning questions
## Additional Information
- Model type: DistilBERT
- Language: English
- License: MIT
- Framework: PyTorch |