File size: 2,100 Bytes
9edba0e
1183b9c
 
 
 
 
 
 
 
 
 
949ff85
1183b9c
 
 
949ff85
1183b9c
 
949ff85
 
 
 
 
 
 
1183b9c
 
 
949ff85
 
9edba0e
 
1183b9c
9edba0e
1183b9c
9edba0e
1183b9c
9edba0e
1183b9c
9edba0e
1183b9c
9edba0e
1183b9c
 
 
 
9edba0e
1183b9c
9edba0e
1183b9c
9edba0e
 
 
 
 
1183b9c
9edba0e
1183b9c
9edba0e
1183b9c
9edba0e
1183b9c
 
 
 
9edba0e
1183b9c
9edba0e
1183b9c
 
 
 
9edba0e
1183b9c
9edba0e
1183b9c
 
 
9edba0e
1183b9c
9edba0e
1183b9c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language: en
tags:
- question-answering
- pytorch
- bert
- squad
license: mit
datasets:
- squad
pipeline_tag: question-answering

model-index:
- name: roberta-large-squad_epoch_3
  results:
  - task: 
      type: question-answering
      name: Question Answering
    metrics:
      - type: exact_match
        value: N/A  # You can update this with actual metrics if available
        name: Exact Match
      - type: f1
        value: N/A  # You can update this with actual metrics if available
        name: F1
    dataset:
      name: SQuAD
      type: squad
      config: plain_text  # Adding the config field
      split: validation  # Adding the split field
---

# roberta-large-squad_epoch_3

## Model description

This is a fine-tuned version of [DistilBERT](https://huggingface.co/distilbert-base-cased-distilled-squad) for question answering tasks. The model was trained on SQuAD dataset.

## Training procedure

The model was trained with the following hyperparameters:

- Learning Rate: 5e-05
- Batch Size: 8
- Epochs: 3
- Weight Decay: 0.01

## Intended uses & limitations

This model is intended to be used for question answering tasks, particularly on SQuAD-like datasets. It performs best on factual questions where the answer can be found as a span of text within the given context.

## Training Details

### Training Data

The model was trained on the SQuAD dataset, which consists of questions posed by crowdworkers on a set of Wikipedia articles.

### Training Hyperparameters

The model was trained with the following hyperparameters:

* learning_rate: 5e-05
* batch_size: 8
* num_epochs: 3
* weight_decay: 0.01

## Uses

This model can be used for:
- Extracting answers from text passages given questions
- Question answering tasks
- Reading comprehension tasks

## Limitations

- The model can only extract answers that are directly present in the given context
- Performance may vary on out-of-domain texts
- The model may struggle with complex reasoning questions

## Additional Information

- Model type: DistilBERT
- Language: English
- License: MIT
- Framework: PyTorch