cleth commited on
Commit
a81e915
1 Parent(s): 8b3ed2a

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +31 -0
  2. SoccerTwos.onnx +3 -0
  3. configuration.yaml +82 -0
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - unity-ml-agents
5
+ - ml-agents
6
+ - deep-reinforcement-learning
7
+ - reinforcement-learning
8
+ - ML-Agents-SoccerTwos
9
+ library_name: ml-agents
10
+ ---
11
+
12
+ # **poca** Agent playing **SoccerTwos**
13
+ This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
14
+
15
+ ## Usage (with ML-Agents)
16
+ The Documentation: https://github.com/huggingface/ml-agents#get-started
17
+ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
18
+
19
+
20
+ ### Resume the training
21
+ ```
22
+ mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
23
+ ```
24
+ ### Watch your Agent play
25
+ You can watch your agent **playing directly in your browser:**.
26
+
27
+ 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
28
+ 2. Step 1: Write your model_id: cleth/poca-SoccerTwos
29
+ 3. Step 2: Select your *.nn /*.onnx file
30
+ 4. Click on Watch the agent play 👀
31
+
SoccerTwos.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14294e89418f415fee570469e377bbb9d04e6ee6f207569fb0cf7db586c8406c
3
+ size 1764633
configuration.yaml ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ default_settings: null
2
+ behaviors:
3
+ SoccerTwos:
4
+ trainer_type: poca
5
+ hyperparameters:
6
+ batch_size: 4096
7
+ buffer_size: 40960
8
+ learning_rate: 0.0003
9
+ beta: 0.005
10
+ epsilon: 0.2
11
+ lambd: 0.95
12
+ num_epoch: 3
13
+ learning_rate_schedule: constant
14
+ beta_schedule: constant
15
+ epsilon_schedule: constant
16
+ checkpoint_interval: 500000
17
+ network_settings:
18
+ normalize: false
19
+ hidden_units: 512
20
+ num_layers: 2
21
+ vis_encode_type: simple
22
+ memory: null
23
+ goal_conditioning_type: hyper
24
+ deterministic: false
25
+ reward_signals:
26
+ extrinsic:
27
+ gamma: 0.99
28
+ strength: 1.0
29
+ network_settings:
30
+ normalize: false
31
+ hidden_units: 128
32
+ num_layers: 2
33
+ vis_encode_type: simple
34
+ memory: null
35
+ goal_conditioning_type: hyper
36
+ deterministic: false
37
+ init_path: null
38
+ keep_checkpoints: 5
39
+ even_checkpoints: false
40
+ max_steps: 5000000
41
+ time_horizon: 1000
42
+ summary_freq: 10000
43
+ threaded: true
44
+ self_play:
45
+ save_steps: 50000
46
+ team_change: 200000
47
+ swap_steps: 2000
48
+ window: 30
49
+ play_against_latest_model_ratio: 0.5
50
+ initial_elo: 1200.0
51
+ behavioral_cloning: null
52
+ env_settings:
53
+ env_path: ./training-envs-executables/SoccerTwos/SoccerTwos.app
54
+ env_args: null
55
+ base_port: 5005
56
+ num_envs: 1
57
+ num_areas: 1
58
+ seed: -1
59
+ max_lifetime_restarts: 10
60
+ restarts_rate_limit_n: 1
61
+ restarts_rate_limit_period_s: 60
62
+ engine_settings:
63
+ width: 84
64
+ height: 84
65
+ quality_level: 5
66
+ time_scale: 20
67
+ target_frame_rate: -1
68
+ capture_frame_rate: 60
69
+ no_graphics: true
70
+ environment_parameters: null
71
+ checkpoint_settings:
72
+ run_id: SoccerTwos
73
+ initialize_from: null
74
+ load_model: false
75
+ resume: false
76
+ force: true
77
+ train_model: false
78
+ inference: false
79
+ results_dir: results
80
+ torch_settings:
81
+ device: null
82
+ debug: false