Upload 3 files
Browse files- README.md +31 -0
- SoccerTwos.onnx +3 -0
- configuration.yaml +82 -0
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- unity-ml-agents
|
5 |
+
- ml-agents
|
6 |
+
- deep-reinforcement-learning
|
7 |
+
- reinforcement-learning
|
8 |
+
- ML-Agents-SoccerTwos
|
9 |
+
library_name: ml-agents
|
10 |
+
---
|
11 |
+
|
12 |
+
# **poca** Agent playing **SoccerTwos**
|
13 |
+
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
|
14 |
+
|
15 |
+
## Usage (with ML-Agents)
|
16 |
+
The Documentation: https://github.com/huggingface/ml-agents#get-started
|
17 |
+
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
|
18 |
+
|
19 |
+
|
20 |
+
### Resume the training
|
21 |
+
```
|
22 |
+
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
|
23 |
+
```
|
24 |
+
### Watch your Agent play
|
25 |
+
You can watch your agent **playing directly in your browser:**.
|
26 |
+
|
27 |
+
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
|
28 |
+
2. Step 1: Write your model_id: cleth/poca-SoccerTwos
|
29 |
+
3. Step 2: Select your *.nn /*.onnx file
|
30 |
+
4. Click on Watch the agent play 👀
|
31 |
+
|
SoccerTwos.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14294e89418f415fee570469e377bbb9d04e6ee6f207569fb0cf7db586c8406c
|
3 |
+
size 1764633
|
configuration.yaml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_settings: null
|
2 |
+
behaviors:
|
3 |
+
SoccerTwos:
|
4 |
+
trainer_type: poca
|
5 |
+
hyperparameters:
|
6 |
+
batch_size: 4096
|
7 |
+
buffer_size: 40960
|
8 |
+
learning_rate: 0.0003
|
9 |
+
beta: 0.005
|
10 |
+
epsilon: 0.2
|
11 |
+
lambd: 0.95
|
12 |
+
num_epoch: 3
|
13 |
+
learning_rate_schedule: constant
|
14 |
+
beta_schedule: constant
|
15 |
+
epsilon_schedule: constant
|
16 |
+
checkpoint_interval: 500000
|
17 |
+
network_settings:
|
18 |
+
normalize: false
|
19 |
+
hidden_units: 512
|
20 |
+
num_layers: 2
|
21 |
+
vis_encode_type: simple
|
22 |
+
memory: null
|
23 |
+
goal_conditioning_type: hyper
|
24 |
+
deterministic: false
|
25 |
+
reward_signals:
|
26 |
+
extrinsic:
|
27 |
+
gamma: 0.99
|
28 |
+
strength: 1.0
|
29 |
+
network_settings:
|
30 |
+
normalize: false
|
31 |
+
hidden_units: 128
|
32 |
+
num_layers: 2
|
33 |
+
vis_encode_type: simple
|
34 |
+
memory: null
|
35 |
+
goal_conditioning_type: hyper
|
36 |
+
deterministic: false
|
37 |
+
init_path: null
|
38 |
+
keep_checkpoints: 5
|
39 |
+
even_checkpoints: false
|
40 |
+
max_steps: 5000000
|
41 |
+
time_horizon: 1000
|
42 |
+
summary_freq: 10000
|
43 |
+
threaded: true
|
44 |
+
self_play:
|
45 |
+
save_steps: 50000
|
46 |
+
team_change: 200000
|
47 |
+
swap_steps: 2000
|
48 |
+
window: 30
|
49 |
+
play_against_latest_model_ratio: 0.5
|
50 |
+
initial_elo: 1200.0
|
51 |
+
behavioral_cloning: null
|
52 |
+
env_settings:
|
53 |
+
env_path: ./training-envs-executables/SoccerTwos/SoccerTwos.app
|
54 |
+
env_args: null
|
55 |
+
base_port: 5005
|
56 |
+
num_envs: 1
|
57 |
+
num_areas: 1
|
58 |
+
seed: -1
|
59 |
+
max_lifetime_restarts: 10
|
60 |
+
restarts_rate_limit_n: 1
|
61 |
+
restarts_rate_limit_period_s: 60
|
62 |
+
engine_settings:
|
63 |
+
width: 84
|
64 |
+
height: 84
|
65 |
+
quality_level: 5
|
66 |
+
time_scale: 20
|
67 |
+
target_frame_rate: -1
|
68 |
+
capture_frame_rate: 60
|
69 |
+
no_graphics: true
|
70 |
+
environment_parameters: null
|
71 |
+
checkpoint_settings:
|
72 |
+
run_id: SoccerTwos
|
73 |
+
initialize_from: null
|
74 |
+
load_model: false
|
75 |
+
resume: false
|
76 |
+
force: true
|
77 |
+
train_model: false
|
78 |
+
inference: false
|
79 |
+
results_dir: results
|
80 |
+
torch_settings:
|
81 |
+
device: null
|
82 |
+
debug: false
|