File size: 2,032 Bytes
710e699
 
 
 
daa071d
 
 
 
710e699
 
 
b25e17d
95f3f6c
710e699
 
fdf90d9
 
 
 
710e699
847148c
 
3f61430
710e699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
  license: cc-by-nc-4.0
---

THIS MODEL IS MADE FOR LEWD

SEXUAL, CRUDE AND KINKY CONTENT IN OUTPUT CAN AND WILL HAPPEN. YOU'RE WARNED

MoE  of the following models by mergekit:

* [Undi95/Xwin-MLewd-13B-V0.2](https://huggingface.co/Undi95/Xwin-MLewd-13B-V0.2)
* [Undi95/Utopia-13B](https://huggingface.co/Undi95/Utopia-13B)
* [KoboldAI/LLaMA2-13B-Psyfighter2](https://huggingface.co/KoboldAI/LLaMA2-13B-Psyfighter2)

MoE setting:
base_model: 

Undi95/Xwin-MLewd-13B-V0.2

experts:
  - Undi95/Utopia-13B 
  - KoboldAI/LLaMA2-13B-Psyfighter2
  





gpu code example

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "Mixtral_Erotic_13Bx2_MOE_22B"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")
```

CPU example

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "Mixtral_Erotic_13Bx2_MOE_22B"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")

```