File size: 11,749 Bytes
b8bbedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "widgets": {
      "application/vnd.jupyter.widget-state+json": {
        "a44dd6024769456a8262a17b0ce6a2ed": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "ButtonModel",
          "model_module_version": "1.5.0",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ButtonModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "ButtonView",
            "button_style": "success",
            "description": "✔ Done",
            "disabled": true,
            "icon": "",
            "layout": "IPY_MODEL_49441085d85a4f219a6ccbf2a197f527",
            "style": "IPY_MODEL_f084b7dfcae445a58d36a9c21971793c",
            "tooltip": ""
          }
        },
        "49441085d85a4f219a6ccbf2a197f527": {
          "model_module": "@jupyter-widgets/base",
          "model_name": "LayoutModel",
          "model_module_version": "1.2.0",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": "50px",
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "f084b7dfcae445a58d36a9c21971793c": {
          "model_module": "@jupyter-widgets/controls",
          "model_name": "ButtonStyleModel",
          "model_module_version": "1.5.0",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ButtonStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "button_color": null,
            "font_weight": ""
          }
        }
      }
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "#@title  Mount Google Drive\n",
        "from google.colab import drive\n",
        "from IPython.display import clear_output\n",
        "from IPython.display import display\n",
        "import ipywidgets as widgets\n",
        "import os\n",
        "\n",
        "def inf(msg, style, wdth): inf = widgets.Button(description=msg, disabled=True, button_style=style, layout=widgets.Layout(min_width=wdth));display(inf)\n",
        "Shared_Drive = \"\" #@param {type:\"string\"}\n",
        "#@markdown - If you're not using a shared drive, leave this empty\n",
        "\n",
        "print(\"\u001b[0;33mConnecting...\")\n",
        "drive.mount('/content/gdrive')\n",
        "\n",
        "if Shared_Drive!=\"\" and os.path.exists(\"/content/gdrive/Shareddrives\"):\n",
        "  mainpth=\"Shareddrives/\"+Shared_Drive\n",
        "else:\n",
        "  mainpth=\"MyDrive\"\n",
        "\n",
        "clear_output()\n",
        "inf('\\u2714 Done','success', '50px')"
      ],
      "metadata": {
        "id": "fCR2boKCTx0z",
        "cellView": "form",
        "outputId": "baf6303f-9850-4dd2-a6d3-86871ac8aef5",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 49,
          "referenced_widgets": [
            "a44dd6024769456a8262a17b0ce6a2ed",
            "49441085d85a4f219a6ccbf2a197f527",
            "f084b7dfcae445a58d36a9c21971793c"
          ]
        }
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "Button(button_style='success', description='✔ Done', disabled=True, layout=Layout(min_width='50px'), style=But…"
            ],
            "application/vnd.jupyter.widget-view+json": {
              "version_major": 2,
              "version_minor": 0,
              "model_id": "a44dd6024769456a8262a17b0ce6a2ed"
            }
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Install Required Dependencies\n",
        "!pip install torch\n",
        "!pip install safetensors\n",
        "!pip install pytorch-lightning"
      ],
      "metadata": {
        "id": "5S88gkUJzeqG"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def inf(msg, style, wdth): inf = widgets.Button(description=msg, disabled=True, button_style=style, layout=widgets.Layout(min_width=wdth));display(inf)\n",
        "file_path = \"\" #@param {type:\"string\"}\n",
        "#@markdown - Copy and paste the path to an embedding or VAE file that you are converting, or a directory containing several files\n",
        "#@markdown - For example: /content/gdrive/MyDrive/myembedding.pt or /content/gdrive/MyDrive/my_directory\n",
        "#@markdown - Pickle files must be in .pt format\n",
        "verbose=True"
      ],
      "metadata": {
        "id": "7aLFC6c4O5EW"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Define Converter Functions\n",
        "import os\n",
        "from typing import Any, Dict\n",
        "\n",
        "import torch\n",
        "from safetensors.torch import save_file\n",
        "\n",
        "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
        "\n",
        "def process_pt_files(path: str, model_type: str, verbose=True) -> None:\n",
        "    if os.path.isdir(path):\n",
        "        # Path is a directory, process all .pt files in the directory\n",
        "        for file_name in os.listdir(path):\n",
        "            if file_name.endswith('.pt'):\n",
        "                process_file(os.path.join(path, file_name), model_type, verbose)\n",
        "    elif os.path.isfile(path) and path.endswith('.pt'):\n",
        "        # Path is a .pt file, process this file\n",
        "        process_file(path, model_type, verbose)\n",
        "    else:\n",
        "        print(f\"{path} is not a valid directory or .pt file.\")\n",
        "\n",
        "def process_file(file_path: str, model_type: str, verbose: bool) -> None:\n",
        "    # Load the PyTorch model\n",
        "    model = torch.load(file_path, map_location=device)\n",
        "\n",
        "    if verbose:\n",
        "        print(file_path)\n",
        "\n",
        "    if model_type == 'embedding':\n",
        "        s_model = process_embedding_file(model, verbose)\n",
        "    elif model_type == 'vae':\n",
        "        s_model = process_vae_file(model, verbose)\n",
        "    else:\n",
        "        raise Exception(f\"model_type `{model_type}` is not supported!\")\n",
        "\n",
        "    # Save the model with the new extension\n",
        "    if file_path.endswith('.pt'):\n",
        "        new_file_path = file_path[:-3] + '.safetensors'\n",
        "    else:\n",
        "        new_file_path = file_path + '.safetensors'\n",
        "    save_file(s_model, new_file_path)\n",
        "\n",
        "def process_embedding_file(model: Dict[str, Any], verbose: bool) -> Dict[str, torch.Tensor]:\n",
        "    # Extract the embedding tensors\n",
        "    model_tensors = model.get('string_to_param').get('*')\n",
        "    s_model = {\n",
        "          'emb_params': model_tensors\n",
        "            }\n",
        "\n",
        "    if verbose:\n",
        "        # Print the requested training information, if it exists\n",
        "        if ('sd_checkpoint_name' in model) and (model['sd_checkpoint_name'] is not None):\n",
        "            print(f\"Trained on {model['sd_checkpoint_name']}.\")\n",
        "        else:\n",
        "            print(\"Checkpoint name not found in the model.\")\n",
        "\n",
        "        if ('step' in model) and (model['step'] is not None):\n",
        "            print(f\"Trained for {model['step']} steps.\")\n",
        "        else:\n",
        "            print(\"Step not found in the model.\")\n",
        "        # Display the tensor's shape\n",
        "        print(f\"Dimensions of embedding tensor: {model_tensors.shape}\")\n",
        "        print()\n",
        "\n",
        "    return s_model\n",
        "\n",
        "def process_vae_file(model: Dict[str, Any], verbose: bool) -> Dict[str, torch.Tensor]:\n",
        "    # Extract the state dictionary\n",
        "    s_model = model[\"state_dict\"]\n",
        "    if verbose:\n",
        "        # Print the requested training information, if it exists\n",
        "        step = model.get('step', model.get('global_step'))\n",
        "        if step is not None:\n",
        "            print(f\"Trained for {step} steps.\")\n",
        "        else:\n",
        "            print(\"Step not found in the model.\")\n",
        "        print()\n",
        "    return s_model"
      ],
      "metadata": {
        "id": "UwH1lXmGw9XP"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Convert the file(s)\n",
        "\n",
        "Run whichever of the two following code blocks corresponds to the type of file you are converting.\n",
        "\n",
        "The converted Safetensor file will be saved in the same directory as the original."
      ],
      "metadata": {
        "id": "LqEl4sM0sMPG"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Convert the Embedding(s)\n",
        "process_pt_files(file_path, 'embedding', verbose=verbose)"
      ],
      "metadata": {
        "id": "4LEWGfjiUeG1",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Convert the VAE(s)\n",
        "process_pt_files(file_path, 'vae', verbose=verbose)"
      ],
      "metadata": {
        "id": "Jil7A1ckyiHA",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}