Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +116 -19
sd_token_similarity_calculator.ipynb
CHANGED
@@ -14,6 +14,15 @@
|
|
14 |
}
|
15 |
},
|
16 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
"source": [
|
@@ -23,7 +32,42 @@
|
|
23 |
"from torch import linalg as LA\n",
|
24 |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
25 |
"%cd /content/sd_tokens\n",
|
26 |
-
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
],
|
28 |
"metadata": {
|
29 |
"id": "Ch9puvwKH1s3"
|
@@ -34,7 +78,8 @@
|
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
"source": [
|
37 |
-
"print(
|
|
|
38 |
],
|
39 |
"metadata": {
|
40 |
"id": "S_Yh9gH_OUA1"
|
@@ -42,36 +87,88 @@
|
|
42 |
"execution_count": null,
|
43 |
"outputs": []
|
44 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
{
|
46 |
"cell_type": "code",
|
47 |
"source": [
|
48 |
-
"def absolute_value(x):\n",
|
49 |
-
" return max(x, -x)\n",
|
50 |
"\n",
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"\n",
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
|
|
59 |
"\n",
|
|
|
|
|
|
|
|
|
60 |
" result = torch.dot(A,B)/(_A*_B)\n",
|
61 |
-
"
|
62 |
-
"\n",
|
63 |
-
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
64 |
"\n",
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
|
|
68 |
],
|
69 |
"metadata": {
|
70 |
-
"id": "
|
71 |
},
|
72 |
-
"execution_count":
|
73 |
"outputs": []
|
74 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
{
|
76 |
"cell_type": "markdown",
|
77 |
"source": [
|
|
|
14 |
}
|
15 |
},
|
16 |
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"source": [
|
20 |
+
"This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation"
|
21 |
+
],
|
22 |
+
"metadata": {
|
23 |
+
"id": "L7JTcbOdBPfh"
|
24 |
+
}
|
25 |
+
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
"source": [
|
|
|
32 |
"from torch import linalg as LA\n",
|
33 |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
34 |
"%cd /content/sd_tokens\n",
|
35 |
+
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)\n",
|
36 |
+
"#-----#\n",
|
37 |
+
"\n",
|
38 |
+
"#Import the vocab.json\n",
|
39 |
+
"import json\n",
|
40 |
+
"import pandas as pd\n",
|
41 |
+
"with open('vocab.json', 'r') as f:\n",
|
42 |
+
" data = json.load(f)\n",
|
43 |
+
"\n",
|
44 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
45 |
+
"\n",
|
46 |
+
"vocab = {\n",
|
47 |
+
" value: key for key, value in _df.items()\n",
|
48 |
+
"}\n",
|
49 |
+
"#-----#\n",
|
50 |
+
"\n",
|
51 |
+
"# Define functions/constants\n",
|
52 |
+
"NUM_TOKENS = 49407\n",
|
53 |
+
"\n",
|
54 |
+
"def absolute_value(x):\n",
|
55 |
+
" return max(x, -x)\n",
|
56 |
+
"\n",
|
57 |
+
"def similarity(id_A , id_B):\n",
|
58 |
+
" #Tensors\n",
|
59 |
+
" A = token[id_A]\n",
|
60 |
+
" B = token[id_B]\n",
|
61 |
+
" #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
|
62 |
+
" _A = LA.vector_norm(A, ord=2)\n",
|
63 |
+
" _B = LA.vector_norm(B, ord=2)\n",
|
64 |
+
" #----#\n",
|
65 |
+
" result = torch.dot(A,B)/(_A*_B)\n",
|
66 |
+
" similarity_pcnt = absolute_value(result.item()*100)\n",
|
67 |
+
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
68 |
+
" result = f'{similarity_pcnt_aprox} %'\n",
|
69 |
+
" return result\n",
|
70 |
+
"#----#"
|
71 |
],
|
72 |
"metadata": {
|
73 |
"id": "Ch9puvwKH1s3"
|
|
|
78 |
{
|
79 |
"cell_type": "code",
|
80 |
"source": [
|
81 |
+
"print(vocab[12432]) #the vocab item for ID 12432\n",
|
82 |
+
"print(token[12432].shape) #dimension of the token"
|
83 |
],
|
84 |
"metadata": {
|
85 |
"id": "S_Yh9gH_OUA1"
|
|
|
87 |
"execution_count": null,
|
88 |
"outputs": []
|
89 |
},
|
90 |
+
{
|
91 |
+
"cell_type": "markdown",
|
92 |
+
"source": [
|
93 |
+
"Get the IDs from a prompt text.\n",
|
94 |
+
"\n",
|
95 |
+
"The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens"
|
96 |
+
],
|
97 |
+
"metadata": {
|
98 |
+
"id": "f1-jS7YJApiO"
|
99 |
+
}
|
100 |
+
},
|
101 |
{
|
102 |
"cell_type": "code",
|
103 |
"source": [
|
|
|
|
|
104 |
"\n",
|
105 |
+
"from transformers import AutoTokenizer\n",
|
106 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
107 |
+
"prompt= \"blah\" # @param {type:'string'}\n",
|
108 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
109 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
110 |
+
"print(input_ids)"
|
111 |
+
],
|
112 |
+
"metadata": {
|
113 |
+
"id": "RPdkYzT2_X85"
|
114 |
+
},
|
115 |
+
"execution_count": null,
|
116 |
+
"outputs": []
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"source": [
|
121 |
+
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1\n",
|
122 |
"\n",
|
123 |
+
"id_A = input_ids[1]\n",
|
124 |
+
"A = token[id_A]\n",
|
125 |
+
"_A = LA.vector_norm(A, ord=2)\n",
|
126 |
+
"dots = torch.zeros(NUM_TOKENS)\n",
|
127 |
"\n",
|
128 |
+
"for index in range(NUM_TOKENS):\n",
|
129 |
+
" id_B = index\n",
|
130 |
+
" B = token[id_B]\n",
|
131 |
+
" _B = LA.vector_norm(B, ord=2)\n",
|
132 |
" result = torch.dot(A,B)/(_A*_B)\n",
|
133 |
+
" result = absolute_value(result.item())\n",
|
134 |
+
" dots[index] = result\n",
|
|
|
135 |
"\n",
|
136 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
137 |
+
"#----#\n",
|
138 |
+
"print(f'Calculated all cosine-similarities between ID = {id_A} the rest of the IDs as a 1x{sorted.shape[0]} tensor')\n",
|
139 |
+
"print(f'Calculated indices as a 1x{indices.shape[0]} tensor')"
|
140 |
],
|
141 |
"metadata": {
|
142 |
+
"id": "juxsvco9B0iV"
|
143 |
},
|
144 |
+
"execution_count": null,
|
145 |
"outputs": []
|
146 |
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"source": [
|
150 |
+
"list_size = 10 # @param {type:'number'}\n",
|
151 |
+
"for index in range(list_size):\n",
|
152 |
+
" print(f'{vocab[indices[index]]}') # vocab item\n",
|
153 |
+
" print(f'ID = {indices[index]}') # IDs\n",
|
154 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n",
|
155 |
+
" print('--------')\n"
|
156 |
+
],
|
157 |
+
"metadata": {
|
158 |
+
"id": "YIEmLAzbHeuo"
|
159 |
+
},
|
160 |
+
"execution_count": null,
|
161 |
+
"outputs": []
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "markdown",
|
165 |
+
"source": [
|
166 |
+
"Find the most similiar Tokens for given input"
|
167 |
+
],
|
168 |
+
"metadata": {
|
169 |
+
"id": "qqZ5DvfLBJnw"
|
170 |
+
}
|
171 |
+
},
|
172 |
{
|
173 |
"cell_type": "markdown",
|
174 |
"source": [
|