Upload sd_token_similarity_calculator.ipynb
Browse files
sd_token_similarity_calculator.ipynb
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"# Load the tokens into the colab\n",
|
21 |
+
"!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n",
|
22 |
+
"import torch\n",
|
23 |
+
"from torch import linalg as LA\n",
|
24 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
25 |
+
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)"
|
26 |
+
],
|
27 |
+
"metadata": {
|
28 |
+
"id": "Ch9puvwKH1s3"
|
29 |
+
},
|
30 |
+
"execution_count": null,
|
31 |
+
"outputs": []
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"source": [
|
36 |
+
"print(token[100].shape) #dimension of the tokens"
|
37 |
+
],
|
38 |
+
"metadata": {
|
39 |
+
"id": "S_Yh9gH_OUA1"
|
40 |
+
},
|
41 |
+
"execution_count": null,
|
42 |
+
"outputs": []
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"source": [
|
47 |
+
"def absolute_value(x):\n",
|
48 |
+
" return max(x, -x)\n",
|
49 |
+
"\n",
|
50 |
+
"def similarity(id_A , id_B):\n",
|
51 |
+
" #Tensors\n",
|
52 |
+
" A = token[id_A]\n",
|
53 |
+
" B = token[id_B]\n",
|
54 |
+
"\n",
|
55 |
+
" #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
|
56 |
+
" _A = LA.vector_norm(A, ord=2)\n",
|
57 |
+
" _B = LA.vector_norm(B, ord=2)\n",
|
58 |
+
"\n",
|
59 |
+
" result = torch.dot(A,B)/(_A*_B)\n",
|
60 |
+
" similarity_pcnt = absolute_value(result.item()*100)\n",
|
61 |
+
"\n",
|
62 |
+
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
|
63 |
+
"\n",
|
64 |
+
" return f'{similarity_pcnt_aprox} %'"
|
65 |
+
],
|
66 |
+
"metadata": {
|
67 |
+
"id": "fxquCxFaUxAZ"
|
68 |
+
},
|
69 |
+
"execution_count": 35,
|
70 |
+
"outputs": []
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"source": [
|
75 |
+
"Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
|
76 |
+
],
|
77 |
+
"metadata": {
|
78 |
+
"id": "kX72bAuhOtlT"
|
79 |
+
}
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"source": [
|
84 |
+
"id_for_token_A = 500 # @param {type:'number'}\n",
|
85 |
+
"id_for_token_B = 4343 # @param {type:'number'}\n",
|
86 |
+
"\n",
|
87 |
+
"similarity = similarity(id_for_token_A , id_for_token_B)\n",
|
88 |
+
"\n",
|
89 |
+
"print(f'The similarity between tokens A and B is {similarity}')"
|
90 |
+
],
|
91 |
+
"metadata": {
|
92 |
+
"colab": {
|
93 |
+
"base_uri": "https://localhost:8080/"
|
94 |
+
},
|
95 |
+
"id": "MwmOdC9cNZty",
|
96 |
+
"outputId": "e75c4987-9d13-4ec7-ca36-775b8dbac707"
|
97 |
+
},
|
98 |
+
"execution_count": 36,
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"output_type": "stream",
|
102 |
+
"name": "stdout",
|
103 |
+
"text": [
|
104 |
+
"The similarity between tokens A and B is 4.001 %\n"
|
105 |
+
]
|
106 |
+
}
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"source": [],
|
112 |
+
"metadata": {
|
113 |
+
"id": "oJC12JgJUPrB"
|
114 |
+
},
|
115 |
+
"execution_count": null,
|
116 |
+
"outputs": []
|
117 |
+
}
|
118 |
+
]
|
119 |
+
}
|