Upload sd_token_similarity_calculator.ipynb
Browse files
sd_token_similarity_calculator.ipynb
CHANGED
@@ -25,6 +25,15 @@
|
|
25 |
"id": "L7JTcbOdBPfh"
|
26 |
}
|
27 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
"source": [
|
@@ -122,10 +131,31 @@
|
|
122 |
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
123 |
],
|
124 |
"metadata": {
|
125 |
-
"id": "rUXQ73IbonHY"
|
|
|
|
|
|
|
|
|
126 |
},
|
127 |
-
"execution_count":
|
128 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
},
|
130 |
{
|
131 |
"cell_type": "code",
|
@@ -238,10 +268,98 @@
|
|
238 |
"NUM_VOCAB_ITEMS = nA\n"
|
239 |
],
|
240 |
"metadata": {
|
241 |
-
"id": "ZMG4CThUAmwW"
|
|
|
|
|
|
|
|
|
|
|
242 |
},
|
243 |
-
"execution_count":
|
244 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
},
|
246 |
{
|
247 |
"cell_type": "code",
|
|
|
25 |
"id": "L7JTcbOdBPfh"
|
26 |
}
|
27 |
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"source": [
|
31 |
+
"THIS IS AN OLD VERSION. UP TO DATE VERSION CAN BE FOUND HERE : https://huggingface.co/datasets/codeShare/text-to-image-prompts/tree/main/Google%20Colab%20Notebooks"
|
32 |
+
],
|
33 |
+
"metadata": {
|
34 |
+
"id": "W0T0dlDuCPTN"
|
35 |
+
}
|
36 |
+
},
|
37 |
{
|
38 |
"cell_type": "code",
|
39 |
"source": [
|
|
|
131 |
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n"
|
132 |
],
|
133 |
"metadata": {
|
134 |
+
"id": "rUXQ73IbonHY",
|
135 |
+
"outputId": "5ba68c03-2c3e-4f47-c307-712ff431f7ec",
|
136 |
+
"colab": {
|
137 |
+
"base_uri": "https://localhost:8080/"
|
138 |
+
}
|
139 |
},
|
140 |
+
"execution_count": 1,
|
141 |
+
"outputs": [
|
142 |
+
{
|
143 |
+
"output_type": "stream",
|
144 |
+
"name": "stdout",
|
145 |
+
"text": [
|
146 |
+
"/content\n",
|
147 |
+
"Cloning into 'text-to-image-prompts'...\n",
|
148 |
+
"remote: Enumerating objects: 2372, done.\u001b[K\n",
|
149 |
+
"remote: Counting objects: 100% (4/4), done.\u001b[K\n",
|
150 |
+
"remote: Compressing objects: 100% (4/4), done.\u001b[K\n",
|
151 |
+
"remote: Total 2372 (delta 0), reused 0 (delta 0), pack-reused 2368 (from 1)\u001b[K\n",
|
152 |
+
"Receiving objects: 100% (2372/2372), 20.75 MiB | 12.08 MiB/s, done.\n",
|
153 |
+
"Resolving deltas: 100% (417/417), done.\n",
|
154 |
+
"Updating files: 100% (1301/1301), done.\n",
|
155 |
+
"Filtering content: 100% (578/578), 2.21 GiB | 36.41 MiB/s, done.\n"
|
156 |
+
]
|
157 |
+
}
|
158 |
+
]
|
159 |
},
|
160 |
{
|
161 |
"cell_type": "code",
|
|
|
268 |
"NUM_VOCAB_ITEMS = nA\n"
|
269 |
],
|
270 |
"metadata": {
|
271 |
+
"id": "ZMG4CThUAmwW",
|
272 |
+
"outputId": "40d41f92-d461-4517-caa9-94951abccdca",
|
273 |
+
"colab": {
|
274 |
+
"base_uri": "https://localhost:8080/",
|
275 |
+
"height": 1000
|
276 |
+
}
|
277 |
},
|
278 |
+
"execution_count": 2,
|
279 |
+
"outputs": [
|
280 |
+
{
|
281 |
+
"output_type": "stream",
|
282 |
+
"name": "stdout",
|
283 |
+
"text": [
|
284 |
+
"reading π fusion-t2i-danbooru-tags-1.json....\n",
|
285 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
286 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
287 |
+
"reading π fusion-t2i-danbooru-tags-5.json....\n",
|
288 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
289 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
290 |
+
"reading π fusion-t2i-danbooru-tags-9.json....\n",
|
291 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
292 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
293 |
+
"reading π fusion-t2i-danbooru-tags-18.json....\n",
|
294 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
295 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
296 |
+
"reading π fusion-t2i-danbooru-tags-17.json....\n",
|
297 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
298 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
299 |
+
"reading π fusion-t2i-danbooru-tags-13.json....\n",
|
300 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
301 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
302 |
+
"reading π fusion-t2i-danbooru-tags-2.json....\n",
|
303 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
304 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
305 |
+
"reading π fusion-t2i-danbooru-tags-12.json....\n",
|
306 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
307 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
308 |
+
"reading π fusion-t2i-danbooru-tags-6.json....\n",
|
309 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
310 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
311 |
+
"reading π fusion-t2i-danbooru-tags-11.json....\n",
|
312 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
313 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
314 |
+
"reading π fusion-t2i-danbooru-tags-4.json....\n",
|
315 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
316 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
317 |
+
"reading π fusion-t2i-danbooru-tags-3.json....\n",
|
318 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
319 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
320 |
+
"reading π fusion-t2i-danbooru-tags-15.json....\n",
|
321 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
322 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
323 |
+
"reading π fusion-t2i-danbooru-tags-8.json....\n",
|
324 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
325 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
326 |
+
"reading π fusion-t2i-danbooru-tags-10.json....\n",
|
327 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
328 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
329 |
+
"reading π fusion-t2i-danbooru-tags-20.json....\n",
|
330 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
331 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
332 |
+
"reading π fusion-t2i-danbooru-tags-19.json....\n",
|
333 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
334 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
335 |
+
"reading π fusion-t2i-danbooru-tags-21.json....\n",
|
336 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
337 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
338 |
+
"reading π fusion-t2i-danbooru-tags-16.json....\n",
|
339 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
340 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
341 |
+
"reading π fusion-t2i-danbooru-tags-14.json....\n",
|
342 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
343 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n",
|
344 |
+
"reading π fusion-t2i-danbooru-tags-7.json....\n",
|
345 |
+
"/content/text-to-image-prompts/danbooru/text\n",
|
346 |
+
"/content/text-to-image-prompts/danbooru/text_encodings\n"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"output_type": "error",
|
351 |
+
"ename": "FileNotFoundError",
|
352 |
+
"evalue": "[Errno 2] No such file or directory: '/content/text-to-image-prompts/tokens/suffix/common/text'",
|
353 |
+
"traceback": [
|
354 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
355 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
356 |
+
"\u001b[0;32m<ipython-input-2-490cc35e84d5>\u001b[0m in \u001b[0;36m<cell line: 83>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mitem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'common'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'average'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rare'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'weird'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'exotic'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0murl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 87\u001b[0;31m \u001b[0mprompts\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mtext_encodings\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnA\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mappend_from_url\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompts\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mtext_encodings\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnA\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 88\u001b[0m \u001b[0;31m#------#\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
357 |
+
"\u001b[0;32m<ipython-input-1-8be73a8413a2>\u001b[0m in \u001b[0;36mappend_from_url\u001b[0;34m(dictA, tensA, nA, url, separator)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mappend_from_url\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdictA\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtensA\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mnA\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mseparator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 78\u001b[0;31m \u001b[0mdictB\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mtensB\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnB\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetPrompts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseparator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 79\u001b[0m \u001b[0mdictAB\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdictA\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0mtensAB\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtensA\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
358 |
+
"\u001b[0;32m<ipython-input-1-8be73a8413a2>\u001b[0m in \u001b[0;36mgetPrompts\u001b[0;34m(_path, separator)\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0m_text_encodings\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0;31m#-----#\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 29\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlistdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'{path}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'reading {filename}....'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
359 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/text-to-image-prompts/tokens/suffix/common/text'"
|
360 |
+
]
|
361 |
+
}
|
362 |
+
]
|
363 |
},
|
364 |
{
|
365 |
"cell_type": "code",
|