Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +500 -28
sd_token_similarity_calculator.ipynb
CHANGED
@@ -28,7 +28,7 @@
|
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
"source": [
|
31 |
-
"# @title Load/initialize values\n",
|
32 |
"# Load the tokens into the colab\n",
|
33 |
"!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n",
|
34 |
"import torch\n",
|
@@ -116,23 +116,10 @@
|
|
116 |
"metadata": {
|
117 |
"id": "Ch9puvwKH1s3",
|
118 |
"collapsed": true,
|
119 |
-
"cellView": "form"
|
120 |
-
"outputId": "9a9d4274-a633-464b-e1fb-06a33f3dd873",
|
121 |
-
"colab": {
|
122 |
-
"base_uri": "https://localhost:8080/"
|
123 |
-
}
|
124 |
},
|
125 |
-
"execution_count":
|
126 |
-
"outputs": [
|
127 |
-
{
|
128 |
-
"output_type": "stream",
|
129 |
-
"name": "stdout",
|
130 |
-
"text": [
|
131 |
-
"fatal: destination path 'sd_tokens' already exists and is not an empty directory.\n",
|
132 |
-
"/content/sd_tokens\n"
|
133 |
-
]
|
134 |
-
}
|
135 |
-
]
|
136 |
},
|
137 |
{
|
138 |
"cell_type": "code",
|
@@ -278,7 +265,8 @@
|
|
278 |
"#Print the sorted list from above result"
|
279 |
],
|
280 |
"metadata": {
|
281 |
-
"id": "iWeFnT1gAx6A"
|
|
|
282 |
},
|
283 |
"execution_count": null,
|
284 |
"outputs": []
|
@@ -315,7 +303,8 @@
|
|
315 |
],
|
316 |
"metadata": {
|
317 |
"id": "QQOjh5BvnG8M",
|
318 |
-
"collapsed": true
|
|
|
319 |
},
|
320 |
"execution_count": null,
|
321 |
"outputs": []
|
@@ -323,14 +312,497 @@
|
|
323 |
{
|
324 |
"cell_type": "code",
|
325 |
"source": [
|
326 |
-
"# @title
|
327 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
"prompt_A = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
|
|
329 |
"# @markdown Set conditions for the output\n",
|
330 |
-
"must_start_with = \"
|
331 |
"must_contain = \"yellow\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
332 |
-
"must_end_with = \"
|
333 |
-
"\n",
|
334 |
"token_B = must_contain\n",
|
335 |
"\n",
|
336 |
"# @markdown Limit the search\n",
|
@@ -343,7 +815,6 @@
|
|
343 |
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
344 |
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
345 |
"\n",
|
346 |
-
"\n",
|
347 |
"#Tokenize input B\n",
|
348 |
"from transformers import AutoTokenizer\n",
|
349 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
@@ -427,8 +898,6 @@
|
|
427 |
" dots[index] = result\n",
|
428 |
"#----#\n",
|
429 |
"\n",
|
430 |
-
"\n",
|
431 |
-
"\n",
|
432 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
433 |
"\n",
|
434 |
"# @markdown Print options\n",
|
@@ -464,6 +933,7 @@
|
|
464 |
" print('--------')"
|
465 |
],
|
466 |
"metadata": {
|
|
|
467 |
"id": "uDtcm-l8UCJk"
|
468 |
},
|
469 |
"execution_count": null,
|
@@ -901,7 +1371,9 @@
|
|
901 |
"\n",
|
902 |
"There might be some updates in the future with features not mentioned here.\n",
|
903 |
"\n",
|
904 |
-
"
|
|
|
|
|
905 |
],
|
906 |
"metadata": {
|
907 |
"id": "njeJx_nSSA8H"
|
|
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
"source": [
|
31 |
+
"# @title ✳️ Load/initialize values\n",
|
32 |
"# Load the tokens into the colab\n",
|
33 |
"!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n",
|
34 |
"import torch\n",
|
|
|
116 |
"metadata": {
|
117 |
"id": "Ch9puvwKH1s3",
|
118 |
"collapsed": true,
|
119 |
+
"cellView": "form"
|
|
|
|
|
|
|
|
|
120 |
},
|
121 |
+
"execution_count": null,
|
122 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
|
|
265 |
"#Print the sorted list from above result"
|
266 |
],
|
267 |
"metadata": {
|
268 |
+
"id": "iWeFnT1gAx6A",
|
269 |
+
"cellView": "form"
|
270 |
},
|
271 |
"execution_count": null,
|
272 |
"outputs": []
|
|
|
303 |
],
|
304 |
"metadata": {
|
305 |
"id": "QQOjh5BvnG8M",
|
306 |
+
"collapsed": true,
|
307 |
+
"cellView": "form"
|
308 |
},
|
309 |
"execution_count": null,
|
310 |
"outputs": []
|
|
|
312 |
{
|
313 |
"cell_type": "code",
|
314 |
"source": [
|
315 |
+
"# @title 🪐🖼️ -> 📝 Image to prompt : Add single token to existing prompt to match image\n",
|
316 |
+
"from google.colab import files\n",
|
317 |
+
"def getLocalFiles():\n",
|
318 |
+
" _files = files.upload()\n",
|
319 |
+
" if len(_files) >0:\n",
|
320 |
+
" for k,v in _files.items():\n",
|
321 |
+
" open(k,'wb').write(v)\n",
|
322 |
+
"\n",
|
323 |
+
"#Get image\n",
|
324 |
+
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
325 |
+
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload\"}\n",
|
326 |
+
"from PIL import Image\n",
|
327 |
+
"import requests\n",
|
328 |
+
"if url == \"\":\n",
|
329 |
+
" image_A = getLocalFiles()\n",
|
330 |
+
"else:\n",
|
331 |
+
" image_A = Image.open(requests.get(url, stream=True).raw)\n",
|
332 |
+
"\n",
|
333 |
+
"\n",
|
334 |
+
"# Get image features\n",
|
335 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
336 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
337 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
338 |
+
"inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
339 |
+
"image_features = model.get_image_features(**inputs)\n",
|
340 |
+
"text_encoding_A = image_features\n",
|
341 |
+
"A = text_encoding_A[0]\n",
|
342 |
+
"_A = LA.vector_norm(A, ord=2)\n",
|
343 |
+
"prompt_A = \"the image\"\n",
|
344 |
+
"name_A = prompt_A\n",
|
345 |
+
"#-----#\n",
|
346 |
+
"\n",
|
347 |
+
"# @markdown Set conditions for the output\n",
|
348 |
+
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
349 |
+
"must_contain = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
350 |
+
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
351 |
+
"token_B = must_contain\n",
|
352 |
+
"\n",
|
353 |
+
"# @markdown Limit the search\n",
|
354 |
+
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
355 |
+
"start_search_at_ID = 12500 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
356 |
+
"search_range = 500 # @param {type:\"slider\", min:0, max: 2000, step:100}\n",
|
357 |
+
"restrictions = 'Suffix only' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
358 |
+
"\n",
|
359 |
+
"# @markdown Limit char size of included token\n",
|
360 |
+
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
361 |
+
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
362 |
+
"\n",
|
363 |
+
"#Tokenize input B\n",
|
364 |
+
"from transformers import AutoTokenizer\n",
|
365 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
366 |
+
"tokenizer_output = tokenizer(text = token_B)\n",
|
367 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
368 |
+
"#-----#\n",
|
369 |
+
"name_B = must_contain\n",
|
370 |
+
"#-----#\n",
|
371 |
+
"\n",
|
372 |
+
"START = start_search_at_ID\n",
|
373 |
+
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
374 |
+
"\n",
|
375 |
+
"dots = torch.zeros(RANGE)\n",
|
376 |
+
"is_BC = torch.zeros(RANGE)\n",
|
377 |
+
"for index in range(RANGE):\n",
|
378 |
+
" id_C = START + index\n",
|
379 |
+
" C = token[id_C]\n",
|
380 |
+
" _C = LA.vector_norm(C, ord=2)\n",
|
381 |
+
" name_C = vocab[id_C]\n",
|
382 |
+
"\n",
|
383 |
+
" # Decide if we should process prefix/suffix tokens\n",
|
384 |
+
" if name_C.find('</w>')<=-1:\n",
|
385 |
+
" if restrictions != \"Prefix only\":\n",
|
386 |
+
" continue\n",
|
387 |
+
" else:\n",
|
388 |
+
" if restrictions == \"Prefix only\":\n",
|
389 |
+
" continue\n",
|
390 |
+
" #-----#\n",
|
391 |
+
"\n",
|
392 |
+
" # Decide if char-size is within range\n",
|
393 |
+
" if len(name_C) < min_char_size:\n",
|
394 |
+
" continue\n",
|
395 |
+
" if len(name_C) > min_char_size + char_range:\n",
|
396 |
+
" continue\n",
|
397 |
+
" #-----#\n",
|
398 |
+
"\n",
|
399 |
+
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
400 |
+
" if restrictions == \"Prefix only\":\n",
|
401 |
+
" name_CB = must_start_with + name_C + '-' + name_B + must_end_with\n",
|
402 |
+
" #-----#\n",
|
403 |
+
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
404 |
+
" text_encoding_CB = model.get_text_features(**ids_CB)\n",
|
405 |
+
" CB = text_encoding_CB[0]\n",
|
406 |
+
" _CB = LA.vector_norm(CB, ord=2)\n",
|
407 |
+
" sim_CB = torch.dot(A,CB)/(_A*_CB)\n",
|
408 |
+
" #-----#\n",
|
409 |
+
" if restrictions == \"Prefix only\":\n",
|
410 |
+
" result = sim_CB\n",
|
411 |
+
" result = result.item()\n",
|
412 |
+
" dots[index] = result\n",
|
413 |
+
" continue\n",
|
414 |
+
" #-----#\n",
|
415 |
+
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
416 |
+
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
417 |
+
" text_encoding_BC = model.get_text_features(**ids_BC)\n",
|
418 |
+
" BC = text_encoding_BC[0]\n",
|
419 |
+
" _BC = LA.vector_norm(BC, ord=2)\n",
|
420 |
+
" sim_BC = torch.dot(A,BC)/(_A*_BC)\n",
|
421 |
+
" #-----#\n",
|
422 |
+
"\n",
|
423 |
+
" result = sim_CB\n",
|
424 |
+
" if(sim_BC > sim_CB):\n",
|
425 |
+
" is_BC[index] = 1\n",
|
426 |
+
" result = sim_BC\n",
|
427 |
+
"\n",
|
428 |
+
" #result = absolute_value(result.item())\n",
|
429 |
+
" result = result.item()\n",
|
430 |
+
" dots[index] = result\n",
|
431 |
+
"#----#\n",
|
432 |
+
"\n",
|
433 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
434 |
+
"\n",
|
435 |
+
"# @markdown Print options\n",
|
436 |
+
"list_size = 100 # @param {type:'number'}\n",
|
437 |
+
"print_ID = False # @param {type:\"boolean\"}\n",
|
438 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
439 |
+
"print_Name = True # @param {type:\"boolean\"}\n",
|
440 |
+
"print_Divider = True # @param {type:\"boolean\"}\n",
|
441 |
+
"\n",
|
442 |
+
"\n",
|
443 |
+
"if (print_Divider):\n",
|
444 |
+
" print('//---//')\n",
|
445 |
+
"\n",
|
446 |
+
"print('')\n",
|
447 |
+
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
448 |
+
"print('')\n",
|
449 |
+
"\n",
|
450 |
+
"for index in range(min(list_size,RANGE)):\n",
|
451 |
+
" id = START + indices[index].item()\n",
|
452 |
+
" if (print_Name):\n",
|
453 |
+
" if(is_BC[index]>0):\n",
|
454 |
+
" print(must_start_with + name_B + vocab[id] + must_end_with)\n",
|
455 |
+
" else:\n",
|
456 |
+
" if restrictions == \"Prefix only\":\n",
|
457 |
+
" print(must_start_with + vocab[id] + '-' + name_B + must_end_with)\n",
|
458 |
+
" else:\n",
|
459 |
+
" print(must_start_with + vocab[id] + name_B + must_end_with)\n",
|
460 |
+
" if (print_ID):\n",
|
461 |
+
" print(f'ID = {id}') # IDs\n",
|
462 |
+
" if (print_Similarity):\n",
|
463 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
464 |
+
" if (print_Divider):\n",
|
465 |
+
" print('--------')\n",
|
466 |
+
"\n",
|
467 |
+
"\n",
|
468 |
+
"\n",
|
469 |
+
"\n",
|
470 |
+
"\n"
|
471 |
+
],
|
472 |
+
"metadata": {
|
473 |
+
"collapsed": true,
|
474 |
+
"cellView": "form",
|
475 |
+
"id": "fi0jRruI0-tu",
|
476 |
+
"outputId": "6d7e8c39-a117-4b35-acfe-2a128c65aeb7",
|
477 |
+
"colab": {
|
478 |
+
"base_uri": "https://localhost:8080/"
|
479 |
+
}
|
480 |
+
},
|
481 |
+
"execution_count": 9,
|
482 |
+
"outputs": [
|
483 |
+
{
|
484 |
+
"output_type": "stream",
|
485 |
+
"name": "stdout",
|
486 |
+
"text": [
|
487 |
+
"//---//\n",
|
488 |
+
"\n",
|
489 |
+
"These token pairings within the range ID = 12500 to ID = 13000 most closely match the text_encoding for the prompt \"the image\" : \n",
|
490 |
+
"\n",
|
491 |
+
"sits</w>yellow\n",
|
492 |
+
"similiarity = 23.02 %\n",
|
493 |
+
"--------\n",
|
494 |
+
"neys</w>yellow\n",
|
495 |
+
"similiarity = 19.74 %\n",
|
496 |
+
"--------\n",
|
497 |
+
"cody</w>yellow\n",
|
498 |
+
"similiarity = 18.61 %\n",
|
499 |
+
"--------\n",
|
500 |
+
"wns</w>yellow\n",
|
501 |
+
"similiarity = 18.43 %\n",
|
502 |
+
"--------\n",
|
503 |
+
"java</w>yellow\n",
|
504 |
+
"similiarity = 18.15 %\n",
|
505 |
+
"--------\n",
|
506 |
+
"jj</w>yellow\n",
|
507 |
+
"similiarity = 18.03 %\n",
|
508 |
+
"--------\n",
|
509 |
+
"eno</w>yellow\n",
|
510 |
+
"similiarity = 17.87 %\n",
|
511 |
+
"--------\n",
|
512 |
+
"cled</w>yellow\n",
|
513 |
+
"similiarity = 17.85 %\n",
|
514 |
+
"--------\n",
|
515 |
+
"nom</w>yellow\n",
|
516 |
+
"similiarity = 17.75 %\n",
|
517 |
+
"--------\n",
|
518 |
+
"dads</w>yellow\n",
|
519 |
+
"similiarity = 17.5 %\n",
|
520 |
+
"--------\n",
|
521 |
+
"mil</w>yellow\n",
|
522 |
+
"similiarity = 17.47 %\n",
|
523 |
+
"--------\n",
|
524 |
+
"whom</w>yellow\n",
|
525 |
+
"similiarity = 17.37 %\n",
|
526 |
+
"--------\n",
|
527 |
+
"itv</w>yellow\n",
|
528 |
+
"similiarity = 17.34 %\n",
|
529 |
+
"--------\n",
|
530 |
+
"vibe</w>yellow\n",
|
531 |
+
"similiarity = 17.2 %\n",
|
532 |
+
"--------\n",
|
533 |
+
"noir</w>yellow\n",
|
534 |
+
"similiarity = 17.14 %\n",
|
535 |
+
"--------\n",
|
536 |
+
"yellowarel</w>\n",
|
537 |
+
"similiarity = 17.1 %\n",
|
538 |
+
"--------\n",
|
539 |
+
"#âĢ¦</w>yellow\n",
|
540 |
+
"similiarity = 17.04 %\n",
|
541 |
+
"--------\n",
|
542 |
+
"maya</w>yellow\n",
|
543 |
+
"similiarity = 17.03 %\n",
|
544 |
+
"--------\n",
|
545 |
+
"yellowbam</w>\n",
|
546 |
+
"similiarity = 17.01 %\n",
|
547 |
+
"--------\n",
|
548 |
+
"erts</w>yellow\n",
|
549 |
+
"similiarity = 17.01 %\n",
|
550 |
+
"--------\n",
|
551 |
+
"xc</w>yellow\n",
|
552 |
+
"similiarity = 16.98 %\n",
|
553 |
+
"--------\n",
|
554 |
+
"mob</w>yellow\n",
|
555 |
+
"similiarity = 16.89 %\n",
|
556 |
+
"--------\n",
|
557 |
+
"dees</w>yellow\n",
|
558 |
+
"similiarity = 16.87 %\n",
|
559 |
+
"--------\n",
|
560 |
+
"icc</w>yellow\n",
|
561 |
+
"similiarity = 16.75 %\n",
|
562 |
+
"--------\n",
|
563 |
+
"aly</w>yellow\n",
|
564 |
+
"similiarity = 16.63 %\n",
|
565 |
+
"--------\n",
|
566 |
+
"lis</w>yellow\n",
|
567 |
+
"similiarity = 16.63 %\n",
|
568 |
+
"--------\n",
|
569 |
+
"yellowturf</w>\n",
|
570 |
+
"similiarity = 16.62 %\n",
|
571 |
+
"--------\n",
|
572 |
+
"yellowbaba</w>\n",
|
573 |
+
"similiarity = 16.58 %\n",
|
574 |
+
"--------\n",
|
575 |
+
":*</w>yellow\n",
|
576 |
+
"similiarity = 16.42 %\n",
|
577 |
+
"--------\n",
|
578 |
+
"inho</w>yellow\n",
|
579 |
+
"similiarity = 16.39 %\n",
|
580 |
+
"--------\n",
|
581 |
+
"yellowhes</w>\n",
|
582 |
+
"similiarity = 16.37 %\n",
|
583 |
+
"--------\n",
|
584 |
+
"nity</w>yellow\n",
|
585 |
+
"similiarity = 16.3 %\n",
|
586 |
+
"--------\n",
|
587 |
+
"lust</w>yellow\n",
|
588 |
+
"similiarity = 16.3 %\n",
|
589 |
+
"--------\n",
|
590 |
+
"ikh</w>yellow\n",
|
591 |
+
"similiarity = 16.26 %\n",
|
592 |
+
"--------\n",
|
593 |
+
"nyt</w>yellow\n",
|
594 |
+
"similiarity = 16.24 %\n",
|
595 |
+
"--------\n",
|
596 |
+
"(+</w>yellow\n",
|
597 |
+
"similiarity = 16.11 %\n",
|
598 |
+
"--------\n",
|
599 |
+
"foto</w>yellow\n",
|
600 |
+
"similiarity = 16.11 %\n",
|
601 |
+
"--------\n",
|
602 |
+
"stl</w>yellow\n",
|
603 |
+
"similiarity = 16.06 %\n",
|
604 |
+
"--------\n",
|
605 |
+
"mick</w>yellow\n",
|
606 |
+
"similiarity = 16.06 %\n",
|
607 |
+
"--------\n",
|
608 |
+
"...@</w>yellow\n",
|
609 |
+
"similiarity = 16.05 %\n",
|
610 |
+
"--------\n",
|
611 |
+
"ugh</w>yellow\n",
|
612 |
+
"similiarity = 16.05 %\n",
|
613 |
+
"--------\n",
|
614 |
+
"gro</w>yellow\n",
|
615 |
+
"similiarity = 16.01 %\n",
|
616 |
+
"--------\n",
|
617 |
+
"wski</w>yellow\n",
|
618 |
+
"similiarity = 16.01 %\n",
|
619 |
+
"--------\n",
|
620 |
+
"ðŁĴ«</w>yellow\n",
|
621 |
+
"similiarity = 15.74 %\n",
|
622 |
+
"--------\n",
|
623 |
+
"deen</w>yellow\n",
|
624 |
+
"similiarity = 15.73 %\n",
|
625 |
+
"--------\n",
|
626 |
+
"assy</w>yellow\n",
|
627 |
+
"similiarity = 15.72 %\n",
|
628 |
+
"--------\n",
|
629 |
+
"mtv</w>yellow\n",
|
630 |
+
"similiarity = 15.72 %\n",
|
631 |
+
"--------\n",
|
632 |
+
"yellowðŁĺ»</w>\n",
|
633 |
+
"similiarity = 15.72 %\n",
|
634 |
+
"--------\n",
|
635 |
+
"yellowfrm</w>\n",
|
636 |
+
"similiarity = 15.65 %\n",
|
637 |
+
"--------\n",
|
638 |
+
"moss</w>yellow\n",
|
639 |
+
"similiarity = 15.64 %\n",
|
640 |
+
"--------\n",
|
641 |
+
"bart</w>yellow\n",
|
642 |
+
"similiarity = 15.61 %\n",
|
643 |
+
"--------\n",
|
644 |
+
"tw</w>yellow\n",
|
645 |
+
"similiarity = 15.51 %\n",
|
646 |
+
"--------\n",
|
647 |
+
"yellowplug</w>\n",
|
648 |
+
"similiarity = 15.46 %\n",
|
649 |
+
"--------\n",
|
650 |
+
"jen</w>yellow\n",
|
651 |
+
"similiarity = 15.45 %\n",
|
652 |
+
"--------\n",
|
653 |
+
"pst</w>yellow\n",
|
654 |
+
"similiarity = 15.43 %\n",
|
655 |
+
"--------\n",
|
656 |
+
"omfg</w>yellow\n",
|
657 |
+
"similiarity = 15.43 %\n",
|
658 |
+
"--------\n",
|
659 |
+
"dine</w>yellow\n",
|
660 |
+
"similiarity = 15.38 %\n",
|
661 |
+
"--------\n",
|
662 |
+
"vern</w>yellow\n",
|
663 |
+
"similiarity = 15.33 %\n",
|
664 |
+
"--------\n",
|
665 |
+
"reno</w>yellow\n",
|
666 |
+
"similiarity = 15.25 %\n",
|
667 |
+
"--------\n",
|
668 |
+
"yellow´</w>\n",
|
669 |
+
"similiarity = 15.14 %\n",
|
670 |
+
"--------\n",
|
671 |
+
"omic</w>yellow\n",
|
672 |
+
"similiarity = 15.14 %\n",
|
673 |
+
"--------\n",
|
674 |
+
"łï¸ı</w>yellow\n",
|
675 |
+
"similiarity = 15.11 %\n",
|
676 |
+
"--------\n",
|
677 |
+
"yellowgis</w>\n",
|
678 |
+
"similiarity = 15.06 %\n",
|
679 |
+
"--------\n",
|
680 |
+
"aunt</w>yellow\n",
|
681 |
+
"similiarity = 15.0 %\n",
|
682 |
+
"--------\n",
|
683 |
+
"joan</w>yellow\n",
|
684 |
+
"similiarity = 14.96 %\n",
|
685 |
+
"--------\n",
|
686 |
+
"anas</w>yellow\n",
|
687 |
+
"similiarity = 14.92 %\n",
|
688 |
+
"--------\n",
|
689 |
+
"ðŁĴĵ</w>yellow\n",
|
690 |
+
"similiarity = 14.9 %\n",
|
691 |
+
"--------\n",
|
692 |
+
"chad</w>yellow\n",
|
693 |
+
"similiarity = 14.89 %\n",
|
694 |
+
"--------\n",
|
695 |
+
"yellowsake</w>\n",
|
696 |
+
"similiarity = 14.88 %\n",
|
697 |
+
"--------\n",
|
698 |
+
"gues</w>yellow\n",
|
699 |
+
"similiarity = 14.84 %\n",
|
700 |
+
"--------\n",
|
701 |
+
"gian</w>yellow\n",
|
702 |
+
"similiarity = 14.84 %\n",
|
703 |
+
"--------\n",
|
704 |
+
"asi</w>yellow\n",
|
705 |
+
"similiarity = 14.83 %\n",
|
706 |
+
"--------\n",
|
707 |
+
"yellowoven</w>\n",
|
708 |
+
"similiarity = 14.82 %\n",
|
709 |
+
"--------\n",
|
710 |
+
"jury</w>yellow\n",
|
711 |
+
"similiarity = 14.79 %\n",
|
712 |
+
"--------\n",
|
713 |
+
"blvd</w>yellow\n",
|
714 |
+
"similiarity = 14.75 %\n",
|
715 |
+
"--------\n",
|
716 |
+
"omez</w>yellow\n",
|
717 |
+
"similiarity = 14.72 %\n",
|
718 |
+
"--------\n",
|
719 |
+
"yellowyang</w>\n",
|
720 |
+
"similiarity = 14.7 %\n",
|
721 |
+
"--------\n",
|
722 |
+
"gu</w>yellow\n",
|
723 |
+
"similiarity = 14.48 %\n",
|
724 |
+
"--------\n",
|
725 |
+
"yellowova</w>\n",
|
726 |
+
"similiarity = 14.45 %\n",
|
727 |
+
"--------\n",
|
728 |
+
"yellowinez</w>\n",
|
729 |
+
"similiarity = 14.44 %\n",
|
730 |
+
"--------\n",
|
731 |
+
"pei</w>yellow\n",
|
732 |
+
"similiarity = 14.44 %\n",
|
733 |
+
"--------\n",
|
734 |
+
"ãĢIJ</w>yellow\n",
|
735 |
+
"similiarity = 14.43 %\n",
|
736 |
+
"--------\n",
|
737 |
+
"ãĢij</w>yellow\n",
|
738 |
+
"similiarity = 14.43 %\n",
|
739 |
+
"--------\n",
|
740 |
+
"ðŁĮŀ</w>yellow\n",
|
741 |
+
"similiarity = 14.36 %\n",
|
742 |
+
"--------\n",
|
743 |
+
"ðŁĺĿ</w>yellow\n",
|
744 |
+
"similiarity = 14.27 %\n",
|
745 |
+
"--------\n",
|
746 |
+
"troy</w>yellow\n",
|
747 |
+
"similiarity = 14.16 %\n",
|
748 |
+
"--------\n",
|
749 |
+
"pale</w>yellow\n",
|
750 |
+
"similiarity = 14.14 %\n",
|
751 |
+
"--------\n",
|
752 |
+
"boi</w>yellow\n",
|
753 |
+
"similiarity = 14.11 %\n",
|
754 |
+
"--------\n",
|
755 |
+
"nn</w>yellow\n",
|
756 |
+
"similiarity = 14.08 %\n",
|
757 |
+
"--------\n",
|
758 |
+
"âı°</w>yellow\n",
|
759 |
+
"similiarity = 14.01 %\n",
|
760 |
+
"--------\n",
|
761 |
+
"ooth</w>yellow\n",
|
762 |
+
"similiarity = 13.93 %\n",
|
763 |
+
"--------\n",
|
764 |
+
"pied</w>yellow\n",
|
765 |
+
"similiarity = 13.9 %\n",
|
766 |
+
"--------\n",
|
767 |
+
"bola</w>yellow\n",
|
768 |
+
"similiarity = 13.79 %\n",
|
769 |
+
"--------\n",
|
770 |
+
"âŀ¡</w>yellow\n",
|
771 |
+
"similiarity = 13.77 %\n",
|
772 |
+
"--------\n",
|
773 |
+
"rena</w>yellow\n",
|
774 |
+
"similiarity = 13.75 %\n",
|
775 |
+
"--------\n",
|
776 |
+
"dley</w>yellow\n",
|
777 |
+
"similiarity = 13.73 %\n",
|
778 |
+
"--------\n",
|
779 |
+
"evan</w>yellow\n",
|
780 |
+
"similiarity = 13.67 %\n",
|
781 |
+
"--------\n",
|
782 |
+
"pony</w>yellow\n",
|
783 |
+
"similiarity = 13.63 %\n",
|
784 |
+
"--------\n",
|
785 |
+
"rene</w>yellow\n",
|
786 |
+
"similiarity = 13.62 %\n",
|
787 |
+
"--------\n",
|
788 |
+
"mock</w>yellow\n",
|
789 |
+
"similiarity = 13.57 %\n",
|
790 |
+
"--------\n"
|
791 |
+
]
|
792 |
+
}
|
793 |
+
]
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"cell_type": "code",
|
797 |
+
"source": [
|
798 |
+
"# @title 🪐📝 Prompt to prompt : Add single token to existing prompt to match another prompt\n",
|
799 |
+
"# @markdown Write a text to match against...\n",
|
800 |
"prompt_A = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
801 |
+
"\n",
|
802 |
"# @markdown Set conditions for the output\n",
|
803 |
+
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
804 |
"must_contain = \"yellow\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
805 |
+
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
|
|
806 |
"token_B = must_contain\n",
|
807 |
"\n",
|
808 |
"# @markdown Limit the search\n",
|
|
|
815 |
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
816 |
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
817 |
"\n",
|
|
|
818 |
"#Tokenize input B\n",
|
819 |
"from transformers import AutoTokenizer\n",
|
820 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
|
|
898 |
" dots[index] = result\n",
|
899 |
"#----#\n",
|
900 |
"\n",
|
|
|
|
|
901 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
902 |
"\n",
|
903 |
"# @markdown Print options\n",
|
|
|
933 |
" print('--------')"
|
934 |
],
|
935 |
"metadata": {
|
936 |
+
"cellView": "form",
|
937 |
"id": "uDtcm-l8UCJk"
|
938 |
},
|
939 |
"execution_count": null,
|
|
|
1371 |
"\n",
|
1372 |
"There might be some updates in the future with features not mentioned here.\n",
|
1373 |
"\n",
|
1374 |
+
"//---//\n",
|
1375 |
+
"\n",
|
1376 |
+
"https://codeandlife.com/2023/01/26/mastering-the-huggingface-clip-model-how-to-extract-embeddings-and-calculate-similarity-for-text-and-images/"
|
1377 |
],
|
1378 |
"metadata": {
|
1379 |
"id": "njeJx_nSSA8H"
|