Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +121 -222
sd_token_similarity_calculator.ipynb
CHANGED
@@ -116,28 +116,10 @@
|
|
116 |
"metadata": {
|
117 |
"id": "Ch9puvwKH1s3",
|
118 |
"collapsed": true,
|
119 |
-
"cellView": "form"
|
120 |
-
"outputId": "8101e515-49f2-41d4-b03b-4195d56f50de",
|
121 |
-
"colab": {
|
122 |
-
"base_uri": "https://localhost:8080/"
|
123 |
-
}
|
124 |
},
|
125 |
-
"execution_count":
|
126 |
-
"outputs": [
|
127 |
-
{
|
128 |
-
"output_type": "stream",
|
129 |
-
"name": "stdout",
|
130 |
-
"text": [
|
131 |
-
"Cloning into 'sd_tokens'...\n",
|
132 |
-
"remote: Enumerating objects: 10, done.\u001b[K\n",
|
133 |
-
"remote: Counting objects: 100% (7/7), done.\u001b[K\n",
|
134 |
-
"remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
|
135 |
-
"remote: Total 10 (delta 1), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
136 |
-
"Unpacking objects: 100% (10/10), 306.93 KiB | 1.19 MiB/s, done.\n",
|
137 |
-
"/content/sd_tokens\n"
|
138 |
-
]
|
139 |
-
}
|
140 |
-
]
|
141 |
},
|
142 |
{
|
143 |
"cell_type": "code",
|
@@ -306,7 +288,16 @@
|
|
306 |
{
|
307 |
"cell_type": "code",
|
308 |
"source": [
|
309 |
-
"# @title 🪐🖼️ -> 📝
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
"from google.colab import files\n",
|
311 |
"def upload_files():\n",
|
312 |
" from google.colab import files\n",
|
@@ -316,61 +307,80 @@
|
|
316 |
" return list(uploaded.keys())\n",
|
317 |
"#Get image\n",
|
318 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
319 |
-
"
|
|
|
|
|
|
|
320 |
"\n",
|
321 |
-
"
|
322 |
"from PIL import Image\n",
|
323 |
"import requests\n",
|
324 |
"image_A = \"\"\n",
|
325 |
"\n",
|
326 |
"#----#\n",
|
327 |
-
"if url == \"\":\n",
|
328 |
-
" import cv2\n",
|
329 |
-
" from google.colab.patches import cv2_imshow\n",
|
330 |
-
" # Open the image.\n",
|
331 |
-
" if colab_image_path == \"\":\n",
|
332 |
-
" keys = upload_files()\n",
|
333 |
-
" for key in keys:\n",
|
334 |
-
" image_A = cv2.imread(\"/content/sd_tokens/\" + key)\n",
|
335 |
-
" colab_image_path = \"/content/sd_tokens/\" + key\n",
|
336 |
-
" else:\n",
|
337 |
-
" image_A = cv2.imread(colab_image_path)\n",
|
338 |
-
"else:\n",
|
339 |
-
" image_A = Image.open(requests.get(url, stream=True).raw)\n",
|
340 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
"\n",
|
342 |
-
"
|
|
|
343 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
344 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
345 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
346 |
-
"
|
347 |
-
"
|
348 |
-
"
|
349 |
-
"
|
350 |
-
"
|
|
|
|
|
|
|
351 |
"#-----#\n",
|
352 |
"\n",
|
353 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
355 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
356 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
357 |
"token_B = must_contain\n",
|
358 |
"\n",
|
359 |
-
"# @markdown
|
360 |
-
"
|
|
|
361 |
"start_search_at_ID = 27700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
362 |
-
"search_range =
|
363 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
364 |
"\n",
|
365 |
-
"#
|
366 |
-
"min_char_size =
|
367 |
-
"char_range =
|
368 |
"\n",
|
369 |
-
"
|
370 |
-
"
|
371 |
-
"
|
372 |
-
"
|
373 |
-
"
|
374 |
"#-----#\n",
|
375 |
"name_B = must_contain\n",
|
376 |
"#-----#\n",
|
@@ -412,17 +422,29 @@
|
|
412 |
" if len(name_C) > min_char_size + char_range:\n",
|
413 |
" continue\n",
|
414 |
" #-----#\n",
|
415 |
-
"\n",
|
416 |
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
417 |
" if is_Prefix>0:\n",
|
418 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
419 |
" #-----#\n",
|
420 |
-
"
|
421 |
-
"
|
422 |
-
"
|
423 |
-
"
|
424 |
-
"
|
425 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
" #-----#\n",
|
427 |
" if restrictions == \"Prefix only\":\n",
|
428 |
" result = sim_CB\n",
|
@@ -430,13 +452,23 @@
|
|
430 |
" dots[index] = result\n",
|
431 |
" continue\n",
|
432 |
" #-----#\n",
|
433 |
-
"
|
434 |
-
"
|
435 |
-
"
|
436 |
-
"
|
437 |
-
"
|
438 |
-
"
|
439 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
" #-----#\n",
|
441 |
"\n",
|
442 |
" result = sim_CB\n",
|
@@ -451,7 +483,9 @@
|
|
451 |
"\n",
|
452 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
453 |
"\n",
|
454 |
-
"
|
|
|
|
|
455 |
"list_size = 100 # @param {type:'number'}\n",
|
456 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
457 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
@@ -531,13 +565,25 @@
|
|
531 |
" #----#\n",
|
532 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
533 |
"\n",
|
534 |
-
"
|
535 |
-
"
|
536 |
-
"
|
537 |
-
"
|
538 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
" dots[index] = sim\n",
|
540 |
" names[index] = name\n",
|
|
|
|
|
541 |
"#------#\n",
|
542 |
"\n",
|
543 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
@@ -604,153 +650,6 @@
|
|
604 |
"id": "hyK423TQCRup"
|
605 |
}
|
606 |
},
|
607 |
-
{
|
608 |
-
"cell_type": "code",
|
609 |
-
"source": [
|
610 |
-
"# @title 🪐📝 Prompt to prompt : Add single token to existing prompt to match another prompt\n",
|
611 |
-
"# @markdown Write a text to match against...\n",
|
612 |
-
"prompt_A = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
613 |
-
"\n",
|
614 |
-
"# @markdown Set conditions for the output\n",
|
615 |
-
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
616 |
-
"must_contain = \"yellow\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
617 |
-
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
618 |
-
"token_B = must_contain\n",
|
619 |
-
"\n",
|
620 |
-
"# @markdown Limit the search\n",
|
621 |
-
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
622 |
-
"start_search_at_ID = 12500 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
623 |
-
"search_range = 500 # @param {type:\"slider\", min:0, max: 2000, step:100}\n",
|
624 |
-
"restrictions = 'Suffix only' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
625 |
-
"\n",
|
626 |
-
"# @markdown Limit char size of included token\n",
|
627 |
-
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
628 |
-
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
629 |
-
"\n",
|
630 |
-
"#Tokenize input B\n",
|
631 |
-
"from transformers import AutoTokenizer\n",
|
632 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
633 |
-
"tokenizer_output = tokenizer(text = token_B)\n",
|
634 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
635 |
-
"#-----#\n",
|
636 |
-
"name_B = must_contain\n",
|
637 |
-
"#-----#\n",
|
638 |
-
"\n",
|
639 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
640 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
641 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
642 |
-
"#-------#\n",
|
643 |
-
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
|
644 |
-
"text_encoding_A = model.get_text_features(**ids_A)\n",
|
645 |
-
"A = text_encoding_A[0]\n",
|
646 |
-
"_A = LA.vector_norm(A, ord=2)\n",
|
647 |
-
"name_A = prompt_A\n",
|
648 |
-
"print(f'a text_encoding was created for the prompt \"{prompt_A}\" ')\n",
|
649 |
-
"print('')\n",
|
650 |
-
"#----#\n",
|
651 |
-
"\n",
|
652 |
-
"START = start_search_at_ID\n",
|
653 |
-
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
654 |
-
"\n",
|
655 |
-
"dots = torch.zeros(RANGE)\n",
|
656 |
-
"is_BC = torch.zeros(RANGE)\n",
|
657 |
-
"for index in range(RANGE):\n",
|
658 |
-
" id_C = START + index\n",
|
659 |
-
" C = token[id_C]\n",
|
660 |
-
" _C = LA.vector_norm(C, ord=2)\n",
|
661 |
-
" name_C = vocab[id_C]\n",
|
662 |
-
"\n",
|
663 |
-
" # Decide if we should process prefix/suffix tokens\n",
|
664 |
-
" if name_C.find('</w>')<=-1:\n",
|
665 |
-
" if restrictions != \"Prefix only\":\n",
|
666 |
-
" continue\n",
|
667 |
-
" else:\n",
|
668 |
-
" if restrictions == \"Prefix only\":\n",
|
669 |
-
" continue\n",
|
670 |
-
" #-----#\n",
|
671 |
-
"\n",
|
672 |
-
" # Decide if char-size is within range\n",
|
673 |
-
" if len(name_C) < min_char_size:\n",
|
674 |
-
" continue\n",
|
675 |
-
" if len(name_C) > min_char_size + char_range:\n",
|
676 |
-
" continue\n",
|
677 |
-
" #-----#\n",
|
678 |
-
"\n",
|
679 |
-
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
680 |
-
" if restrictions == \"Prefix only\":\n",
|
681 |
-
" name_CB = must_start_with + name_C + '-' + name_B + must_end_with\n",
|
682 |
-
" #-----#\n",
|
683 |
-
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
684 |
-
" text_encoding_CB = model.get_text_features(**ids_CB)\n",
|
685 |
-
" CB = text_encoding_CB[0]\n",
|
686 |
-
" _CB = LA.vector_norm(CB, ord=2)\n",
|
687 |
-
" sim_CB = torch.dot(A,CB)/(_A*_CB)\n",
|
688 |
-
" #-----#\n",
|
689 |
-
" if restrictions == \"Prefix only\":\n",
|
690 |
-
" result = sim_CB\n",
|
691 |
-
" result = result.item()\n",
|
692 |
-
" dots[index] = result\n",
|
693 |
-
" continue\n",
|
694 |
-
" #-----#\n",
|
695 |
-
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
696 |
-
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
697 |
-
" text_encoding_BC = model.get_text_features(**ids_BC)\n",
|
698 |
-
" BC = text_encoding_BC[0]\n",
|
699 |
-
" _BC = LA.vector_norm(BC, ord=2)\n",
|
700 |
-
" sim_BC = torch.dot(A,BC)/(_A*_BC)\n",
|
701 |
-
" #-----#\n",
|
702 |
-
"\n",
|
703 |
-
" result = sim_CB\n",
|
704 |
-
" if(sim_BC > sim_CB):\n",
|
705 |
-
" is_BC[index] = 1\n",
|
706 |
-
" result = sim_BC\n",
|
707 |
-
"\n",
|
708 |
-
" #result = absolute_value(result.item())\n",
|
709 |
-
" result = result.item()\n",
|
710 |
-
" dots[index] = result\n",
|
711 |
-
"#----#\n",
|
712 |
-
"\n",
|
713 |
-
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
714 |
-
"\n",
|
715 |
-
"# @markdown Print options\n",
|
716 |
-
"list_size = 100 # @param {type:'number'}\n",
|
717 |
-
"print_ID = False # @param {type:\"boolean\"}\n",
|
718 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
719 |
-
"print_Name = True # @param {type:\"boolean\"}\n",
|
720 |
-
"print_Divider = True # @param {type:\"boolean\"}\n",
|
721 |
-
"\n",
|
722 |
-
"\n",
|
723 |
-
"if (print_Divider):\n",
|
724 |
-
" print('//---//')\n",
|
725 |
-
"\n",
|
726 |
-
"print('')\n",
|
727 |
-
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for the prompt \"{prompt_A}\" : ')\n",
|
728 |
-
"print('')\n",
|
729 |
-
"\n",
|
730 |
-
"for index in range(min(list_size,RANGE)):\n",
|
731 |
-
" id = START + indices[index].item()\n",
|
732 |
-
" if (print_Name):\n",
|
733 |
-
" if(is_BC[index]>0):\n",
|
734 |
-
" print(must_start_with + name_B + vocab[id] + must_end_with)\n",
|
735 |
-
" else:\n",
|
736 |
-
" if restrictions == \"Prefix only\":\n",
|
737 |
-
" print(must_start_with + vocab[id] + '-' + name_B + must_end_with)\n",
|
738 |
-
" else:\n",
|
739 |
-
" print(must_start_with + vocab[id] + name_B + must_end_with)\n",
|
740 |
-
" if (print_ID):\n",
|
741 |
-
" print(f'ID = {id}') # IDs\n",
|
742 |
-
" if (print_Similarity):\n",
|
743 |
-
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
744 |
-
" if (print_Divider):\n",
|
745 |
-
" print('--------')"
|
746 |
-
],
|
747 |
-
"metadata": {
|
748 |
-
"cellView": "form",
|
749 |
-
"id": "uDtcm-l8UCJk"
|
750 |
-
},
|
751 |
-
"execution_count": null,
|
752 |
-
"outputs": []
|
753 |
-
},
|
754 |
{
|
755 |
"cell_type": "markdown",
|
756 |
"source": [
|
|
|
116 |
"metadata": {
|
117 |
"id": "Ch9puvwKH1s3",
|
118 |
"collapsed": true,
|
119 |
+
"cellView": "form"
|
|
|
|
|
|
|
|
|
120 |
},
|
121 |
+
"execution_count": null,
|
122 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
|
|
288 |
{
|
289 |
"cell_type": "code",
|
290 |
"source": [
|
291 |
+
"# @title 🪐🖼️ -> 📝 Slow Recursive Token Image interrogator\n",
|
292 |
+
"\n",
|
293 |
+
"# @markdown # What do you want to to mimic?\n",
|
294 |
+
"use = '🖼️image_encoding from image' # @param ['📝text_encoding from prompt', '🖼️image_encoding from image']\n",
|
295 |
+
"# @markdown --------------------------\n",
|
296 |
+
"use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n",
|
297 |
+
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
298 |
+
"\n",
|
299 |
+
"prompt_A = prompt\n",
|
300 |
+
"\n",
|
301 |
"from google.colab import files\n",
|
302 |
"def upload_files():\n",
|
303 |
" from google.colab import files\n",
|
|
|
307 |
" return list(uploaded.keys())\n",
|
308 |
"#Get image\n",
|
309 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
310 |
+
"image_url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
311 |
+
"\n",
|
312 |
+
"\n",
|
313 |
+
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n",
|
314 |
"\n",
|
315 |
+
"# @markdown --------------------------\n",
|
316 |
"from PIL import Image\n",
|
317 |
"import requests\n",
|
318 |
"image_A = \"\"\n",
|
319 |
"\n",
|
320 |
"#----#\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
"\n",
|
322 |
+
"if(use == '🖼️image_encoding from image'):\n",
|
323 |
+
" if image_url == \"\":\n",
|
324 |
+
" import cv2\n",
|
325 |
+
" from google.colab.patches import cv2_imshow\n",
|
326 |
+
" # Open the image.\n",
|
327 |
+
" if colab_image_path == \"\":\n",
|
328 |
+
" keys = upload_files()\n",
|
329 |
+
" for key in keys:\n",
|
330 |
+
" image_A = cv2.imread(\"/content/sd_tokens/\" + key)\n",
|
331 |
+
" colab_image_path = \"/content/sd_tokens/\" + key\n",
|
332 |
+
" else:\n",
|
333 |
+
" image_A = cv2.imread(\"/content/sd_tokens/\" + colab_image_path)\n",
|
334 |
+
" else:\n",
|
335 |
+
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
336 |
+
"#------#\n",
|
337 |
"\n",
|
338 |
+
"from transformers import AutoTokenizer\n",
|
339 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
340 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
341 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
342 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
343 |
+
"\n",
|
344 |
+
"\n",
|
345 |
+
"if(use == '🖼️image_encoding from image'):\n",
|
346 |
+
" # Get image features\n",
|
347 |
+
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
348 |
+
" image_features = model.get_image_features(**inputs)\n",
|
349 |
+
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
350 |
+
" name_A = \"the image\"\n",
|
351 |
"#-----#\n",
|
352 |
"\n",
|
353 |
+
"\n",
|
354 |
+
"if(use == '📝text_encoding from prompt'):\n",
|
355 |
+
" # Get text features\n",
|
356 |
+
" inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
357 |
+
" text_features_A = model.get_text_features(**inputs)\n",
|
358 |
+
" name_A = prompt\n",
|
359 |
+
"#-----#\n",
|
360 |
+
"\n",
|
361 |
+
"\n",
|
362 |
+
"# @markdown # The output...\n",
|
363 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
364 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
365 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
366 |
"token_B = must_contain\n",
|
367 |
"\n",
|
368 |
+
"# @markdown -----\n",
|
369 |
+
"\n",
|
370 |
+
"# @markdown # Use a range of tokens from the vocab.json (slow method)\n",
|
371 |
"start_search_at_ID = 27700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
372 |
+
"search_range = 100 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
373 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
374 |
"\n",
|
375 |
+
"#markdown Limit char size of included token <----- Disabled\n",
|
376 |
+
"min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
377 |
+
"char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
378 |
"\n",
|
379 |
+
"\n",
|
380 |
+
"# markdown # ...or paste prompt items\n",
|
381 |
+
"# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n",
|
382 |
+
"_enable = False # param {\"type\":\"boolean\"}\n",
|
383 |
+
"prompt_items = \"\" # param {\"type\":\"string\",\"placeholder\":\"{item1|item2|...}\"}\n",
|
384 |
"#-----#\n",
|
385 |
"name_B = must_contain\n",
|
386 |
"#-----#\n",
|
|
|
422 |
" if len(name_C) > min_char_size + char_range:\n",
|
423 |
" continue\n",
|
424 |
" #-----#\n",
|
|
|
425 |
" name_CB = must_start_with + name_C + name_B + must_end_with\n",
|
426 |
" if is_Prefix>0:\n",
|
427 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
428 |
" #-----#\n",
|
429 |
+
"\n",
|
430 |
+
" if(use == '🖼️image_encoding from image'):\n",
|
431 |
+
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
432 |
+
" text_features = model.get_text_features(**ids_CB)\n",
|
433 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
434 |
+
" logit_scale = model.logit_scale.exp()\n",
|
435 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
436 |
+
" sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
437 |
+
" #-----#\n",
|
438 |
+
"\n",
|
439 |
+
" if(use == '📝text_encoding from prompt'):\n",
|
440 |
+
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
441 |
+
" text_features = model.get_text_features(**ids_CB)\n",
|
442 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
443 |
+
" sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
444 |
+
" #-----#\n",
|
445 |
+
"\n",
|
446 |
+
"\n",
|
447 |
+
"\n",
|
448 |
" #-----#\n",
|
449 |
" if restrictions == \"Prefix only\":\n",
|
450 |
" result = sim_CB\n",
|
|
|
452 |
" dots[index] = result\n",
|
453 |
" continue\n",
|
454 |
" #-----#\n",
|
455 |
+
"\n",
|
456 |
+
" if(use == '🖼️image_encoding from image'):\n",
|
457 |
+
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
458 |
+
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
459 |
+
" text_features = model.get_text_features(**ids_BC)\n",
|
460 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
461 |
+
" logit_scale = model.logit_scale.exp()\n",
|
462 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
463 |
+
" sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
464 |
+
" #-----#\n",
|
465 |
+
"\n",
|
466 |
+
" if(use == '📝text_encoding from prompt'):\n",
|
467 |
+
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
468 |
+
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
469 |
+
" text_features = model.get_text_features(**ids_BC)\n",
|
470 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
471 |
+
" sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
472 |
" #-----#\n",
|
473 |
"\n",
|
474 |
" result = sim_CB\n",
|
|
|
483 |
"\n",
|
484 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
485 |
"\n",
|
486 |
+
"\n",
|
487 |
+
"# @markdown ----------\n",
|
488 |
+
"# @markdown # Print options\n",
|
489 |
"list_size = 100 # @param {type:'number'}\n",
|
490 |
"print_ID = False # @param {type:\"boolean\"}\n",
|
491 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
|
|
565 |
" #----#\n",
|
566 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
567 |
"\n",
|
568 |
+
" if(use == '🖼️image_encoding from image'):\n",
|
569 |
+
" text_features = model.get_text_features(**ids)\n",
|
570 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
571 |
+
" logit_scale = model.logit_scale.exp()\n",
|
572 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
573 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
574 |
+
" #-----#\n",
|
575 |
+
"\n",
|
576 |
+
" if(use == '📝text_encoding from prompt'):\n",
|
577 |
+
" text_features = model.get_text_features(**ids)\n",
|
578 |
+
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
579 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
580 |
+
" #-----#\n",
|
581 |
+
"\n",
|
582 |
+
"\n",
|
583 |
" dots[index] = sim\n",
|
584 |
" names[index] = name\n",
|
585 |
+
"\n",
|
586 |
+
"\n",
|
587 |
"#------#\n",
|
588 |
"\n",
|
589 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
|
|
650 |
"id": "hyK423TQCRup"
|
651 |
}
|
652 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
{
|
654 |
"cell_type": "markdown",
|
655 |
"source": [
|