{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation. Try this Free online SD 1.5 generator with the results: https://perchance.org/fusion-ai-image-generator" ], "metadata": { "id": "L7JTcbOdBPfh" } }, { "cell_type": "code", "source": [ "# @title Load/initialize values\n", "# Load the tokens into the colab\n", "!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n", "import torch\n", "from torch import linalg as LA\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "%cd /content/sd_tokens\n", "token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)\n", "#-----#\n", "\n", "#Import the vocab.json\n", "import json\n", "import pandas as pd\n", "with open('vocab.json', 'r') as f:\n", " data = json.load(f)\n", "\n", "_df = pd.DataFrame({'count': data})['count']\n", "\n", "vocab = {\n", " value: key for key, value in _df.items()\n", "}\n", "#-----#\n", "\n", "# Define functions/constants\n", "NUM_TOKENS = 49407\n", "\n", "def absolute_value(x):\n", " return max(x, -x)\n", "\n", "def similarity(id_A , id_B):\n", " #Tensors\n", " A = token[id_A]\n", " B = token[id_B]\n", " #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n", " _A = LA.vector_norm(A, ord=2)\n", " _B = LA.vector_norm(B, ord=2)\n", " #----#\n", " result = torch.dot(A,B)/(_A*_B)\n", " #similarity_pcnt = absolute_value(result.item()*100)\n", " similarity_pcnt = result.item()*100\n", " similarity_pcnt_aprox = round(similarity_pcnt, 3)\n", " result = f'{similarity_pcnt_aprox} %'\n", " return result\n", "#----#\n", "\n", "#print(vocab[8922]) #the vocab item for ID 8922\n", "#print(token[8922].shape) #dimension of the token\n", "\n", "mix_with = \"\"\n", "mix_method = \"None\"" ], "metadata": { "id": "Ch9puvwKH1s3" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Tokenize prompt into IDs\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "\n", "prompt= \"banana\" # @param {type:'string'}\n", "\n", "tokenizer_output = tokenizer(text = prompt)\n", "input_ids = tokenizer_output['input_ids']\n", "print(input_ids)\n", "id_A = input_ids[1]\n", "A = token[id_A]\n", "_A = LA.vector_norm(A, ord=2)\n", "\n", "#if no imput exists we just randomize the entire thing\n", "if (prompt == \"\"):\n", " id_A = -1\n", " print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n", " R = torch.rand(768)\n", " _R = LA.vector_norm(R, ord=2)\n", " A = R*(_A/_R)\n", "\n", "#Save a copy of the tensor A\n", "id_P = input_ids[1]\n", "P = token[id_A]\n", "_P = LA.vector_norm(A, ord=2)\n", "\n", "#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n", "\n", "#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID." ], "metadata": { "id": "RPdkYzT2_X85", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "e335f5da-b26d-4eea-f854-fd646444ea14" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[49406, 8922, 49407]\n" ] } ] }, { "cell_type": "code", "source": [ "# @title Take the ID at index 1 from above result and modify it (optional)\n", "mix_with = \"\" # @param {type:'string'}\n", "mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n", "w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n", "\n", "#------#\n", "#If set to TRUE , this will use the output of this cell , tensor A, as the input of this cell the 2nd time we run it. Use this feature to mix many tokens into A\n", "re_iterate_tensor_A = True # @param {\"type\":\"boolean\"}\n", "if (re_iterate_tensor_A == False) :\n", " #prevent re-iterating A by reading from stored copy\n", " id_A = id_P\n", " A = P\n", " _A = _P\n", "#----#\n", "\n", "tokenizer_output = tokenizer(text = mix_with)\n", "input_ids = tokenizer_output['input_ids']\n", "id_C = input_ids[1]\n", "C = token[id_C]\n", "_C = LA.vector_norm(C, ord=2)\n", "\n", "#if no imput exists we just randomize the entire thing\n", "if (mix_with == \"\"):\n", " id_C = -1\n", " print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n", " R = torch.rand(768)\n", " _R = LA.vector_norm(R, ord=2)\n", " C = R*(_C/_R)\n", "\n", "if (mix_method == \"None\"):\n", " print(\"No operation\")\n", "\n", "if (mix_method == \"Average\"):\n", " A = w*A + (1-w)*C\n", " _A = LA.vector_norm(A, ord=2)\n", " print(\"Tokenized prompt tensor A has been recalculated as A = w*A + (1-w)*C , where C is the tokenized prompt 'mix_with' tensor C\")\n", "\n", "if (mix_method == \"Subtract\"):\n", " tmp = (A/_A) - (C/_C)\n", " _tmp = LA.vector_norm(tmp, ord=2)\n", " A = tmp*((w*_A + (1-w)*_C)/_tmp)\n", " _A = LA.vector_norm(A, ord=2)\n", " print(\"Tokenized prompt tensor A has been recalculated as A = (w*_A + (1-w)*_C) * norm(w*A - (1-w)*C) , where C is the tokenized prompt 'mix_with' tensor C\")\n", "\n", "#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor" ], "metadata": { "id": "oXbNSRSKPgRr" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "\n", "# @title Find Similiar Tokens to ID at index 1 from above result\n", "dots = torch.zeros(NUM_TOKENS)\n", "for index in range(NUM_TOKENS):\n", " id_B = index\n", " B = token[id_B]\n", " _B = LA.vector_norm(B, ord=2)\n", " result = torch.dot(A,B)/(_A*_B)\n", " #result = absolute_value(result.item())\n", " result = result.item()\n", " dots[index] = result\n", "\n", "name_A = \"A of random type\"\n", "if (id_A>-1):\n", " name_A = vocab[id_A]\n", "\n", "name_C = \"token C of random type\"\n", "if (id_C>-1):\n", " name_C = vocab[id_C]\n", "\n", "\n", "sorted, indices = torch.sort(dots,dim=0 , descending=True)\n", "#----#\n", "if (mix_method == \"Average\"):\n", " print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n", "if (mix_method == \"Subtract\"):\n", " print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n", "if (mix_method == \"None\"):\n", " print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n", "\n", "#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result" ], "metadata": { "id": "juxsvco9B0iV" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Print Result from the 'Similiar Tokens' list from above result\n", "list_size = 100 # @param {type:'number'}\n", "print_ID = False # @param {type:\"boolean\"}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Name = True # @param {type:\"boolean\"}\n", "print_Divider = True # @param {type:\"boolean\"}\n", "\n", "for index in range(list_size):\n", " id = indices[index].item()\n", " if (print_Name):\n", " print(f'{vocab[id]}') # vocab item\n", " if (print_ID):\n", " print(f'ID = {id}') # IDs\n", " if (print_Similarity):\n", " print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n", " if (print_Divider):\n", " print('--------')\n", "\n", "#Print the sorted list from above result" ], "metadata": { "id": "YIEmLAzbHeuo", "collapsed": true }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "\n", "# @title Get similarity % of two token IDs\n", "id_for_token_A = 4567 # @param {type:'number'}\n", "id_for_token_B = 4343 # @param {type:'number'}\n", "\n", "similarity_str = 'The similarity between tokens A and B is ' + similarity(id_for_token_A , id_for_token_B)\n", "\n", "print(similarity_str)\n", "\n", "#Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407" ], "metadata": { "id": "MwmOdC9cNZty" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "\n", "\n", "This is how the notebook works:\n", "\n", "Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n", "\n", "CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1\n", "\n", "Dimensions are [ 1x768 ] tensors for SD 1.5 , and a [ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n", "\n", "The SD models and FLUX converts these vectors to an image.\n", "\n", "This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer\n", "\n", "It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n", "\n", "\n", "