Update modeling_codesage.py
Browse files- modeling_codesage.py +67 -1
modeling_codesage.py
CHANGED
@@ -11,7 +11,11 @@ from transformers.activations import ACT2FN
|
|
11 |
from transformers.modeling_utils import Conv1D, PreTrainedModel
|
12 |
from transformers.utils import logging
|
13 |
from .config_codesage import CodeSageConfig
|
14 |
-
from transformers.modeling_outputs import
|
|
|
|
|
|
|
|
|
15 |
|
16 |
logger = logging.get_logger(__name__)
|
17 |
|
@@ -151,6 +155,7 @@ class CodeSageBlock(nn.Module):
|
|
151 |
|
152 |
class CodeSagePreTrainedModel(PreTrainedModel):
|
153 |
config_class = CodeSageConfig
|
|
|
154 |
|
155 |
def _init_weights(self, module):
|
156 |
"""Initialize the weights."""
|
@@ -277,7 +282,68 @@ class CodeSageModel(CodeSagePreTrainedModel):
|
|
277 |
)
|
278 |
|
279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
|
|
|
281 |
def __init__(self, config):
|
282 |
super().__init__(config)
|
283 |
self.num_labels = config.num_labels
|
|
|
11 |
from transformers.modeling_utils import Conv1D, PreTrainedModel
|
12 |
from transformers.utils import logging
|
13 |
from .config_codesage import CodeSageConfig
|
14 |
+
from transformers.modeling_outputs import (
|
15 |
+
BaseModelOutputWithPooling,
|
16 |
+
MaskedLMOutput,
|
17 |
+
SequenceClassifierOutput
|
18 |
+
)
|
19 |
|
20 |
logger = logging.get_logger(__name__)
|
21 |
|
|
|
155 |
|
156 |
class CodeSagePreTrainedModel(PreTrainedModel):
|
157 |
config_class = CodeSageConfig
|
158 |
+
base_model_prefix = "transformer"
|
159 |
|
160 |
def _init_weights(self, module):
|
161 |
"""Initialize the weights."""
|
|
|
282 |
)
|
283 |
|
284 |
|
285 |
+
class CodeSageForMaskedLM(CodeSagePreTrainedModel):
|
286 |
+
_tied_weights_keys = ["lm_head.weight"]
|
287 |
+
|
288 |
+
def __init__(self, config):
|
289 |
+
super().__init__(config)
|
290 |
+
self.transformer = CodeSageModel(config)
|
291 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
292 |
+
|
293 |
+
self.init_weights()
|
294 |
+
|
295 |
+
def get_output_embeddings(self):
|
296 |
+
return self.lm_head
|
297 |
+
|
298 |
+
def set_output_embeddings(self, new_embeddings):
|
299 |
+
self.lm_head = new_embeddings
|
300 |
+
|
301 |
+
def forward(
|
302 |
+
self,
|
303 |
+
input_ids=None,
|
304 |
+
attention_mask=None,
|
305 |
+
position_ids=None,
|
306 |
+
head_mask=None,
|
307 |
+
inputs_embeds=None,
|
308 |
+
labels=None,
|
309 |
+
output_attentions=None,
|
310 |
+
output_hidden_states=None,
|
311 |
+
return_dict=None
|
312 |
+
):
|
313 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
314 |
+
|
315 |
+
transformer_outputs = self.transformer(
|
316 |
+
input_ids,
|
317 |
+
attention_mask=attention_mask,
|
318 |
+
position_ids=position_ids,
|
319 |
+
head_mask=head_mask,
|
320 |
+
inputs_embeds=inputs_embeds,
|
321 |
+
output_attentions=output_attentions,
|
322 |
+
output_hidden_states=output_hidden_states,
|
323 |
+
return_dict=return_dict
|
324 |
+
)
|
325 |
+
hidden_states = transformer_outputs[0]
|
326 |
+
lm_logits = self.lm_head(hidden_states)
|
327 |
+
|
328 |
+
masked_lm_loss = None
|
329 |
+
if labels is not None:
|
330 |
+
loss_fct = CrossEntropyLoss()
|
331 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
332 |
+
|
333 |
+
if not return_dict:
|
334 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
335 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
336 |
+
|
337 |
+
return MaskedLMOutput(
|
338 |
+
loss=masked_lm_loss,
|
339 |
+
logits=lm_logits,
|
340 |
+
hidden_states=transformer_outputs.hidden_states,
|
341 |
+
attentions=transformer_outputs.attentions,
|
342 |
+
)
|
343 |
+
|
344 |
+
|
345 |
class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
|
346 |
+
|
347 |
def __init__(self, config):
|
348 |
super().__init__(config)
|
349 |
self.num_labels = config.num_labels
|